R/minimize.R

Defines functions get_initial_design minimize

Documented in get_initial_design minimize

#' Find optimal two-stage design by constraint minimization
#'
#' \code{minimize} takes an unconditional score and
#' a constraint set (or no constraint) and solves the corresponding
#' minimization problem using
#' \href{https://cran.r-project.org/package=nloptr}{\code{nloptr}}
#' (using COBYLA by default).
#' An initial design has to be defined. It is also possible to define
#' lower- and upper-boundary designs. If this is not done, the boundaries are
#' determined automatically heuristically.
#'
#' @param objective objective function
#' @param subject_to constraint collection
#' @param initial_design initial guess (x0 for nloptr)
#' @param lower_boundary_design design specifying the lower boundary.
#' @param upper_boundary_design design specifying the upper boundary
#' @param c2_decreasing if TRUE, the c2_pivots are forced to be monotonically decreasing
#' @param check_constraints if TRUE, it is checked if constrains are fulfilled
#' @param opts options list passed to nloptr
#' @param ... further optional arguments passed to \code{\link[nloptr]{nloptr}}
#'
#' @return a list with elements:
#'     \item{design}{ The resulting optimal design}
#'     \item{nloptr_return}{ Output of the corresponding nloptr call}
#'     \item{call_args}{ The arguments given to the optimization call}
#'
#' @examples
#' # Define Type one error rate
#' toer <- Power(Normal(), PointMassPrior(0.0, 1))
#'
#' # Define Power at delta = 0.4
#' pow <- Power(Normal(), PointMassPrior(0.4, 1))
#'
#' # Define expected sample size at delta = 0.4
#' ess <- ExpectedSampleSize(Normal(), PointMassPrior(0.4, 1))
#'
#' # Compute design minimizing ess subject to power and toer constraints
#' \donttest{
#' minimize(
#'
#'    ess,
#'
#'    subject_to(
#'       toer <= 0.025,
#'       pow  >= 0.9
#'    ),
#'
#'    initial_design = TwoStageDesign(50, .0, 2.0, 60.0, 2.0, 5L)
#'
#' )
#' }
#'
#' @export
minimize <- function(
    objective,
    subject_to,
    initial_design,
    lower_boundary_design = get_lower_boundary_design(initial_design),
    upper_boundary_design = get_upper_boundary_design(initial_design),
    c2_decreasing = FALSE,
    check_constraints = TRUE,
    opts         =  list(
        algorithm   = "NLOPT_LN_COBYLA",
        xtol_rel    = 1e-5,
        maxeval     = 10000
    ),
    ...
) {

    args <- c(as.list(environment()), list(...))

    f_obj <- function(params) {
        evaluate(
            objective,
            update(initial_design, params),
            optimization = TRUE # evaluate in optimization context!
        )
    }

    g_cnstr <- function(params) {
        design <- update(initial_design, params)
        user_cnstr <- evaluate(subject_to, design, optimization = TRUE)
        constraints <- c(
          user_cnstr,
          design@c1f - design@c1e + ifelse( # ensure c1e > c1f if not one-stage
            is(initial_design, "OneStageDesign"), 0, .1)
        )
        if (c2_decreasing & !is(initial_design, "OneStageDesign")) {
          constraints <- c(constraints, diff(design@c2_pivots))
        }
        return(constraints)
    }

    res <- nloptr::nloptr(
        x0          = tunable_parameters(initial_design),
        lb          = tunable_parameters(lower_boundary_design),
        ub          = tunable_parameters(upper_boundary_design),
        eval_f      = f_obj,
        eval_g_ineq = g_cnstr,
        opts        = opts,
        ...
    )

    if (res$status == 5 | res$status == 6)
        warning(res$message)
    
    if(check_constraints){
      new_des <- update(initial_design, res$solution)
      for(constr in subject_to@unconditional_constraints){
        if(constr@rhs == 0){
          if(evaluate(constr@score, new_des) - constr@rhs >= 0.001){
            warning(sprintf("The following constraint could not be fulfilled: %s (absolute tolerance: %s)",
                            utils::capture.output(show(constr)), format(0.001)))
          }
        }
        else{
          if(evaluate(constr@score, new_des) - constr@rhs >= min(0.01 * abs(constr@rhs), 0.49)){
            warning(sprintf("The following constraint could not be fulfilled: %s (relative tolerance: %s)",
                            utils::capture.output(show(constr)), format(0.01)))
          }
        }
        
      }
      for(constr in subject_to@conditional_constraints){
        grid <- seq(new_des@c1f, new_des@c1e, length.out = 10)
        if(constr@rhs == 0){
          if(any(evaluate(constr@score, new_des, grid) - constr@rhs >= 0.001)){
            warning(sprintf("The following constraint could not be fulfilled: %s (absolute tolerance: %s)",
                            utils::capture.output(show(constr)), format(0.001)))
          }
        }
        else{
          if(any(evaluate(constr@score, new_des, grid) - constr@rhs >= min(0.01 * abs(constr@rhs), 0.49))){
            warning(sprintf("The following constraint could not be fulfilled: %s (relative tolerance: %s)",
                            utils::capture.output(show(constr)), format(0.01)))
          }
        }
        
      }
    }

    res <- list(
        design        = update(initial_design, res$solution),
        nloptr_return = res,
        call_args     = args
    )
    class(res) <- c("adoptrOptimizationResult", class(res))
    return(res)
}

setClass("adoptrOptimizationResult")
setMethod("print", signature("adoptrOptimizationResult"),
          function(x, ...) cat(design2str(x$design, TRUE), "\n"))



#' Initial design
#'
#' The optimization method \code{\link{minimize}} requires an initial
#' design for optimization.
#' This function provides a variety of possibilities to hand-craft designs that 
#' fulfill type I error and type II error constraints which may be used as initial designs.
#'
#' @param theta the alternative effect size in the normal case, the
#' rate difference under the alternative in the binomial case
#' @param alpha maximal type I error rate
#' @param beta maximal type II error rate
#' @param type_design type of design
#' @param type_c2 either linear-decreasing c2-function according to inverse normal 
#' combination test or constant c2
#' @param type_n2 design of n2-function
#' @param dist distribution of the test statistic
#' @param cf first-stage futility boundary
#' @param ce first-stage efficacy boundary. Note that specifying this boundary 
#' implies that the type I error constraint might not be fulfilled anymore
#' @param info_ratio the ratio between first and second stage sample size
#' @param slope slope of n2 function
#' @param weight weight of first stage test statistics in inverse normal combination test
#' @param order desired integration order
#' @template dotdotdot
#'
#' @details
#' The distribution of the test statistic is specified by \code{dist}.
#' The default assumes a two-armed z-test.
#' The first stage efficacy boundary and the \eqn{c2} boundary are chosen as Pocock-boundaries, so either \eqn{c_e=c_2}
#' if \eqn{c_2} is constant or \eqn{c_e=c}, where the null hypothesis is rejected if \eqn{w_1 Z_1+w_2 Z_2>c}.
#' By specifying \eqn{ce}, it's clear that the boundaries are not Pocock-boundaries anymore, so the type I error
#' constraint may not be fulfilled.
#' IMPORTANT: When using the t-distribution or ANOVA, the design does probably
#' not keep the type I and type II error, only approximate designs are returned.
#'
#' @examples
#' init <- get_initial_design(
#'    theta = 0.3,
#'    alpha = 0.025,
#'    beta  = 0.2,
#'    type_design="two-stage",
#'    type_c2="linear_decreasing",
#'    type_n2="linear_increasing",
#'    dist=Normal(),
#'    cf=0.7,
#'    info_ratio=0.5,
#'    slope=23,
#'    weight = 1/sqrt(3)
#' )
#' 
#' @return An object of class \code{\link{TwoStageDesign}}.
#' 
#' @export
get_initial_design <- function(theta,
                               alpha,
                               beta,
                               type_design = c("two-stage", "group-sequential", "one-stage"),
                               type_c2 = c("linear_decreasing", "constant"),
                               type_n2 = c("optimal", "constant", "linear_decreasing", "linear_increasing"),
                               dist = Normal(),
                               cf,
                               ce,
                               info_ratio = 0.5,
                               slope,
                               weight = sqrt(info_ratio),
                               order = 7L,...) {
  
  # match the inputs
  type_design <- match.arg(type_design)
  
  # overwrite the distributions that depend on n under the null
  if(is(dist, "Student")){
    dist <- Normal(two_armed = dist@two_armed)
  }
  
  # default value for n when computing rejection boundaries. Only matters for ANOVA
  n_H0 <- ifelse(is(dist, "NestedModels"), 30, 1)
  
  # check that theta is correct
  theta2 <- ifelse(is(dist, "Survival"), log(theta), theta)
  theta_null <- ifelse(is(dist, "Survival"), 1, 0)
  
  if(theta2 < 0) stop("Effect size must not be smaller than zero!")
  
  # compute cf depending on the current distribution
  if(missing(cf)){
    cf <- quantile(dist, 0.5, n_H0, theta_null)
  }
  
  # raise warnings if c2 or n2 are mistakenly specified
  if(type_design == "group-sequential" || type_design == "one-stage") {
    if(type_design == "one-stage") {
      if(!missing(type_c2)) {
        warning("The type of the c2 function is not relevant for one-stage designs.")
      }
    }
    if(!missing(type_n2)) {
      warning("The type of the n2 function is not relevant for one-stage or group-sequential designs.")
    }
  }
  
  type_c2 <- match.arg(type_c2)
  type_n2 <- match.arg(type_n2)
  
  # rename some variables
  power <- 1 - beta
  w1 <- weight
  w2 <- sqrt(1 - w1**2)
  
  # check for valid inputs
  if(any(alpha <= 0, alpha >= 1, beta <= 0, beta >= 1, info_ratio < 0, info_ratio > 1, weight >= 1, weight <= 0)) {
    stop("alpha, beta, information ratio or weights must be in (0, 1)!")}
  
  if(!missing(ce)) {
    if(ce < cf) {
      stop("Efficacy boundary must not be smaller than futility boundary!")
    }
  }
  
  
  # c2 and n2 type not relevant for one-stage designs, so we first finish that case
  if(type_design == "one-stage") {
    ce <- quantile(dist, 1 - alpha, n_H0, theta_null)
    find_n <- function(n) {
      (1 - cumulative_distribution_function(dist, ce, n, theta)) - power
    }
    n <- stats::uniroot(find_n, interval = c(0, 1000), extendInt = "upX")$root
    ifelse(is(dist, "Survival"), return(OneStageDesign(n, ce, event_rate=dist@event_rate)),
           return(OneStageDesign(n, ce)))
  }
  
  # case 1: constant c2 function
  if(type_c2 == "constant") {
    # we assume ce = c2
    if(missing(ce)) {
      find_c <- function(c){
        integrand_c <- function(z) {
          (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) *
            probability_density_function(dist, z, n_H0, theta_null)
        }
        (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) +
          stats::integrate(integrand_c,lower = cf,upper = c)$value - alpha
      }
      c2 <- stats::uniroot(find_c, interval = c(cf, 5), extendInt = "yes")$root
      ce <- c2
    } else {
      find_c2 <- function(c) {
        integrand_c <- function(z) {
          (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) *
            probability_density_function(dist, z, n_H0, theta_null)
        }
        (1 - cumulative_distribution_function(dist, ce, n_H0, theta_null)) +
          stats::integrate(integrand_c, lower = cf, upper = ce)$value - alpha
      }
      c_try <- try(stats::uniroot(find_c2, interval = c(cf, 5), extendInt = "yes")$root,
                   silent = TRUE)
      if("try-error" %in% class(c_try)) {
        warning("Type I error constraint cannot be fulfilled.")
        find_c <- function(c) {
          integrand_c <- function(z) {
            (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) *
              probability_density_function(dist, z, n_H0, theta_null)
          }
          (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) +
            stats::integrate(integrand_c, lower = cf, upper = c)$value - alpha
        }
        c2 <- stats::uniroot(find_c, interval = c(cf, 5), extendInt = "yes")$root
      } else {
        c2 <- stats::uniroot(find_c2, interval = c(cf, 5),extendInt = "yes")$root
      }
    }
  }
  
  # case2: linear decreasing c2 function by inverse normal combination
  if(type_c2 == "linear_decreasing") {
    # we assume ce=c*, where c* is the boundary for Z*=w_1*Z_1+w_2*Z_2
    if(missing(ce)) {
      find_ce <- function(c) {
        integrand_ce <- function(z) {
          (1 - cumulative_distribution_function(dist, (c - w1 * z) / sqrt(1 - w1**2), n_H0, theta_null)) *
            probability_density_function(dist, z, n_H0, theta_null)
        }
        (1 - cumulative_distribution_function(dist, c, n_H0, theta_null)) +
          stats::integrate(integrand_ce, lower = cf, upper = c)$value - alpha
      }
      c <- stats::uniroot(find_ce, interval = c(cf, 5), extendInt = "yes")$root
      ce <- c
    } else {
      find_ce <- function(c) {
        integrand_ce <- function(z) {
          (1 - cumulative_distribution_function(dist, (c - w1 * z) / sqrt(1 - w1**2), n_H0, theta_null)) *
            probability_density_function(dist, z, n_H0, theta_null)
        }
        (1 - cumulative_distribution_function(dist, ce, n_H0, theta_null)) +
          stats::integrate(integrand_ce,lower = cf, upper = ce)$value - alpha
      }
      c_try <- try(stats::uniroot(find_ce, interval = c(cf, 5), extendInt="yes")$root,
                   silent = TRUE)
      if("try-error" %in% class(c_try)) {
        warning("Type I error constraint cannot be fulfilled.")
        c <- ce
      } else {
        c <- stats::uniroot(find_ce, interval = c(cf, 5), extendInt = "yes")$root}
    }
    
    # we need to evaluate this function at each pivot
    critical_values <- function(z) {
      (c - w1 * z) / sqrt(1 - w1**2)
    }
    oldnodes <- GaussLegendreRule(as.integer(order))$nodes
    h <- (ce - cf) / 2
    newnodes <- h * oldnodes + (h + cf)
    c2 <- sapply(newnodes, critical_values)
  }
  
  # for group-sequential designs, n2 is constant. We choose n so that the toer and tter are not exceeded
  if(type_design == "group-sequential") {
    if(type_c2 == "constant") {
      find_n <- function(n) {
        integrand_n <- function(z) {
          (1 - cumulative_distribution_function(dist, c2, (1 - info_ratio) * n, theta)) *
            probability_density_function(dist, z, (info_ratio) * n, theta)
        }
        (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
          stats::integrate(integrand_n, cf, ce)$value - power
      }
    }
    if(type_c2 == "linear_decreasing") {
      find_n <- function(n) {
        integrand_n <- function(z) {
          (1 - cumulative_distribution_function(dist, (c - w1 * z) / sqrt(1 - w1**2), (1 - info_ratio) * n, theta)) *
            probability_density_function(dist, z, (info_ratio)*n, theta)
        }
        (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
          stats::integrate(integrand_n, cf, ce)$value - power
      }
    }
    # choose n1 and n2 according to information ratio
    n <- stats ::uniroot(find_n, interval = c(0, 1000), extendInt = "upX")$root
    n1 <- info_ratio * n
    n2 <- (1-info_ratio) * n
    # if(length(c2)!=1) n2 <- rep(n2,order)
    
    ifelse(is(dist, "Survival"), 
           return(GroupSequentialDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)), 
           return(GroupSequentialDesign(n1, cf, ce, n2, c2, order = order)))
  }
  
  # for two-stage designs, the four different n2-designs need to be considered
  if(type_design == "two-stage") {
    # constant n2 is the same as group-sequential, but returns a two-stage instead of a group sequential design
    if(type_n2 == "constant") {
      if(type_c2 == "constant") {
        find_n <- function(n) {
          integrand_n <- function(z) {
            (1 - cumulative_distribution_function(dist, c2, (1 - info_ratio) * n, theta)) *
              probability_density_function(dist, z, (info_ratio) * n, theta)
          }
          (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
            stats::integrate(integrand_n, cf, ce)$value - power
        }
      }
      if(type_c2 == "linear_decreasing") {
        find_n <- function(n) {
          integrand_n <- function(z) {
            (1 - cumulative_distribution_function(dist, (c - w1 * z) / sqrt(1 - w1**2), (1 - info_ratio) * n, theta)) *
              probability_density_function(dist, z, (info_ratio) * n, theta)
          }
          (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
            stats::integrate(integrand_n, cf, ce)$value - power
        }
      }
      # choose n1 and n2 according to information ratio
      n <- stats ::uniroot(find_n, interval = c(0, 1000), extendInt = "upX")$root
      n1 <- info_ratio * n
      n2 <- (1 - info_ratio) * n
      if(length(c2) != 1) n2 <- rep(n2, order)
      
      ifelse(is(dist,"Survival"), 
             return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
             return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))
    }
      
    
    # the optimal n2 function is evaluated at each pivot and therefore, it is not constant 
    # first stage sample size is determined like before.
    if(any(type_n2 == "optimal", type_n2=="linear_increasing", type_n2=="linear_decreasing")) {
      if(length(c2) == 1) c2 <- rep(c2,order)
      
      if(type_c2 == "constant") {
        find_n <- function(n) {
          integrand_n <- function(z) {
            (1 - cumulative_distribution_function(dist, c2, (1 - info_ratio) * n, theta)) *
              probability_density_function(dist, z, (info_ratio) * n, theta)
          }
          (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
            stats::integrate(integrand_n, cf, ce)$value - power
        }
      }
      
      if(type_c2 == "linear_decreasing") {
        #first, find the n1 sample size. We use the same sample size as we have under constant n2-function
        find_n <- function(n) {
          integrand_n <- function(z) {
            (1 - cumulative_distribution_function(dist, (c - w1 * z) / sqrt(1 - w1**2), (1 - info_ratio) * n, theta)) *
              probability_density_function(dist, z, (info_ratio) * n, theta)
          }
          (1 - cumulative_distribution_function(dist, ce, info_ratio * n, theta)) +
            stats::integrate(integrand_n, cf, ce)$value - power
        }
      }
      n <- stats ::uniroot(find_n, interval = c(0, 1000), extendInt = "upX")$root
      n1 <- info_ratio * n
      
      # find the right value of the n2 function at each pivot
      find_n2 <- function(n2, pivot) {
        integrand_n2 <- function(z) {
          (1 - cumulative_distribution_function(dist, pivot, n2, theta)) *
            probability_density_function(dist, z, n1, theta)
        }
        (1 - cumulative_distribution_function(dist, ce, n1, theta)) +
          stats::integrate(integrand_n2, cf, ce)$value - power
      }
      n2 <- rep(0.0, order)
      for(i in (1:order)) {
        n_try <- suppressWarnings(try(stats::uniroot(f = find_n2,
                                                     interval = c(0, 1000),
                                                     extendInt = "upX",
                                                     pivot = c2[i])$root, 
                                      silent=TRUE))
        
        if("try-error" %in% class(n_try) & type_n2 == "optimal") {
          stop("Optimal n2 function cannot be calculated. Please reduce efficacy boundary or the information ratio.") # nocov
        } else if("try-error" %in% class(n_try) & 
                  (type_n2 == "linear_decreasing" || 
                   type_n2 == "linear_increasing") & missing(slope)) {
          stop("Please specify a slope or reduce efficacy boundary or the information ratio.") # nocov
        } else if("try-error" %in% class(n_try) & 
                  (type_n2 == "linear_decreasing" || 
                   type_n2 == "linear_increasing") & !missing(slope)) {
          n2[i] <- 0.1 # nocov
        } else {
          n2[i] <- stats::uniroot(f = find_n2, interval = c(0, 1000), extendInt = "upX",
                                  pivot = c2[i])$root
        }
      }
      
      if (type_n2 == "optimal") {
        ifelse(is(dist,"Survival"), 
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))
      }
      
      if(type_n2 == "linear_decreasing") {
        interim_design <- TwoStageDesign(n1, cf, ce, n2, c2)
        if(missing(slope)) {
          #find the minimum and maximal values of n2
          n2_min <- n2(interim_design, ce)
          n2_max <- n2(interim_design, cf)
          
          #compute the slope of n2 function
          slope <- (n2_min - n2_max) / (ce - cf)
          if(slope == 0) {
            slope <- -n2_max / (ce - cf) # nocov
          }
        }
        
        if(slope > 0){
          stop("For linear_decreasing, slope needs to be smaller zero")
        }
        start_value <- -slope * ce + .1
        
        #find y-intercept of n2 function
        find_y_intercept <- function(b, slope ){
          integrand_b <- function(z) {
            (1 - cumulative_distribution_function(dist, c2(interim_design, z), slope * z + b, theta)) *
              probability_density_function(dist,z,n1,theta)
          }
          (1 - cumulative_distribution_function(dist, ce, n1, theta)) +
            stats::integrate(integrand_b, cf, ce)$value - power
        }
        
        t <- suppressWarnings(try(stats::uniroot(find_y_intercept,
                                                 interval = c(start_value, 1000),
                                                 extendInt = "upX",
                                                 slope = slope)$root, 
                                  silent = TRUE))
        
        if("try-error" %in% class(t)) {
          warning("Absolute value of slope too high. It was automatically reduced.")
        }
        while(("try-error" %in% class(t))&&(slope<=0)) {
          slope <- slope + 1
          start_value <- -slope * ce + .1
          t <- suppressWarnings(try(stats::uniroot(find_y_intercept,
                                                   interval = c(start_value, 1000),
                                                   extendInt = "upX",
                                                   slope=slope)$root,
                                    silent = TRUE))
        }
        if(slope > 0) {# nocov start
          ifelse(is(dist,"Survival"), 
                 return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
                 return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))# nocov end
        }
        
        y_intercept <- stats::uniroot(find_y_intercept,
                                      interval = c(start_value, 1000),
                                      extendInt = "upX",slope = slope)$root
        
        n2func <- function(z) {
          slope * z + y_intercept
        }
        
        oldnodes <- GaussLegendreRule(as.integer(order))$nodes
        h <- (ce - cf) / 2
        newnodes <- h * oldnodes + (h + cf)
        
        #evaluate n2 function at pivots
        n2 <- n2func(newnodes)
        ifelse(is(dist,"Survival"), 
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))
      }
      
      if(type_n2 == "linear_increasing") {
        #find the minimum and maximal values of n2
        interim_design <- TwoStageDesign(n1, cf, ce, n2, c2)
        if(missing(slope)){
          #find the minimum and maximal values of n2
          n2_min <- n2(interim_design, ce)
          n2_max <- n2(interim_design, cf)
          
          
          #compute the slope of n2 function
          slope <- (n2_max - n2_min) / (ce - cf)
          if(slope == 0) {
            slope <- n2_max / (ce - cf) # nocov
          }
        }
        if(slope < 0) {
          stop("For linear_increasing, slope needs to be greater zero")
        }
        
        
        #find y-intercept of n2 function
        find_y_intercept <- function(b, slope) {
          integrand_b <- function(z){
            (1 - cumulative_distribution_function(dist, c2(interim_design,z), slope * z + b, theta)) *
              probability_density_function(dist, z, n1, theta)
          }
          (1 - cumulative_distribution_function(dist, ce, n1, theta)) +
            stats::integrate(integrand_b, cf, ce)$value - power
        }
        
        start_value <- -slope * cf + .1
        
        #it is possible that the n2 function gets negative what leads to errors,
        #so we need to reduce the slope to be positive
        t <- suppressWarnings(try(stats::uniroot(find_y_intercept,
                                                 interval = c(start_value, 1000),
                                                 extendInt = "upX",
                                                 slope = slope)$root, 
                                  silent = TRUE))
        
        if("try-error" %in% class(t)) {
          warning("Absolute value of slope too high. It was automatically reduced.")
        }
        while(("try-error" %in% class(t)) && (slope >= 0)) {
          slope <- slope - 1
          start_value <- -slope * cf + .1
          t <- suppressWarnings(try(stats::uniroot(find_y_intercept,
                                                   interval = c(start_value, 1000),
                                                   extendInt = "upX",
                                                   slope = slope)$root, 
                                    silent = TRUE))
        }
        
        if(slope < 0) {# nocov start
          ifelse(is(dist,"Survival"), 
                 return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
                 return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))# nocov end
        }
        
        y_intercept <- stats::uniroot(find_y_intercept,
                                      interval = c(start_value, 1000),
                                      extendInt = "upX", slope = slope)$root
        
        n2func <- function(z) {
          slope * z + y_intercept
        }
        
        oldnodes <- GaussLegendreRule(as.integer(order))$nodes
        h <- (ce - cf) / 2
        newnodes <- h * oldnodes + (h + cf)
        
        #evaluate n2 function at pivots
        n2 <- n2func(newnodes)
        ifelse(is(dist,"Survival"), 
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order, event_rate = dist@event_rate)),
               return(TwoStageDesign(n1, cf, ce, n2, c2, order = order)))
      }
    }
  }
}




#' Boundary designs
#'
#' The optimization method \code{\link{minimize}} is based on the package
#' \code{nloptr}. This requires upper and lower boundaries for optimization.
#' Such boundaries can be computed via \code{lower_boundary_design}
#' respectively \code{upper_boundary_design}.
#' They are implemented by default in \code{\link{minimize}}.
#' Note that \code{\link{minimize}} allows the user to define its own
#' boundary designs, too.
#'
#' @param initial_design The initial design
#' @param n1 bound for the first-stage sample size n1
#' @param n2_pivots bound for the second-stage sample size n2
#' @param c1_buffer shift of the early-stopping boundaries from the initial ones
#' @param c2_buffer shift of the final decision boundary from the initial one
#' @param ... optional arguments
#'
#' The values \code{c1f} and \code{c1e} from the initial design are shifted
#' to \code{c1f - c1_buffer} and \code{c1e - c1_buffer} in
#' \code{get_lower_boundary_design}, respectively, to \cr
#' \code{c1f + c1_buffer} and \code{c1e + c1_buffer} in
#' \code{get_upper_boundary_design}.
#' This is handled analogously with \code{c2_pivots} and \code{c2_buffer}.
#'
#' @return An object of class \code{\link{TwoStageDesign}}.
#'
#' @examples
#' initial_design <- TwoStageDesign(
#'   n1    = 25,
#'   c1f   = 0,
#'   c1e   = 2.5,
#'   n2    = 50,
#'   c2    = 1.96,
#'   order = 7L
#'   )
#' get_lower_boundary_design(initial_design)
#'
#' @rdname boundary-designs
#' @export
setGeneric("get_lower_boundary_design",
           function(initial_design, ...) standardGeneric("get_lower_boundary_design"))



#' @rdname boundary-designs
#' @export
setGeneric("get_upper_boundary_design",
           function(initial_design, ...) standardGeneric("get_upper_boundary_design"))



#' @rdname boundary-designs
#' @export
setMethod("get_lower_boundary_design", signature("OneStageDesign"),
          function(initial_design, n1 = 1, c1_buffer = 2, ...) {
              lb_design <- OneStageDesign(n1, min(0, initial_design@c1f - c1_buffer))
              lb_design@tunable <- initial_design@tunable
              return(lb_design)

          })


#' @rdname boundary-designs
#' @export
setMethod("get_lower_boundary_design", signature("GroupSequentialDesign"),
          function(
              initial_design,
              n1        = 1,
              n2_pivots = 1,
              c1_buffer = 2,
              c2_buffer = 2,
              ...
          ) {
              lb_design <- GroupSequentialDesign(
                  n1,
                  initial_design@c1f - c1_buffer,
                  initial_design@c1e - c1_buffer,
                  n2_pivots,
                  initial_design@c2_pivots - c2_buffer,
                  order = length(initial_design@c2_pivots)
              )
              lb_design@tunable <- initial_design@tunable
              return(lb_design)

          })



#' @rdname boundary-designs
#' @export
setMethod("get_lower_boundary_design", signature("TwoStageDesign"),
          function(
              initial_design,
              n1        = 1,
              n2_pivots = 1,
              c1_buffer = 2,
              c2_buffer = 2,
              ...
          ) {
              lb_design <- TwoStageDesign(
                  n1,
                  initial_design@c1f - c1_buffer,
                  initial_design@c1e - c1_buffer,
                  rep(n2_pivots, length(initial_design@c2_pivots)),
                  initial_design@c2_pivots - c2_buffer,
                  order = length(initial_design@c2_pivots)
              )
              lb_design@tunable <- initial_design@tunable
              return(lb_design)

          })





#' @rdname boundary-designs
#' @export
setMethod("get_upper_boundary_design", signature("OneStageDesign"),
          function(initial_design, n1 = 5 * initial_design@n1, c1_buffer = 2, ...) {
              ub_design <- OneStageDesign(n1, initial_design@c1f + c1_buffer)
              ub_design@tunable <- initial_design@tunable
              return(ub_design)
          })



#' @rdname boundary-designs
#' @export
setMethod("get_upper_boundary_design", signature("GroupSequentialDesign"),
          function(
              initial_design,
              n1        = 5 * initial_design@n1,
              n2_pivots = 5 * initial_design@n2_pivots,
              c1_buffer = 2,
              c2_buffer = 2,
              ...
          ) {
              ub_design <- GroupSequentialDesign(
                  n1,
                  initial_design@c1f + c1_buffer,
                  initial_design@c1e + c1_buffer,
                  n2_pivots,
                  initial_design@c2_pivots + c2_buffer,
                  order = length(initial_design@c2_pivots)
              )
              ub_design@tunable <- initial_design@tunable
              return(ub_design)
          })


#' @rdname boundary-designs
#' @export
setMethod("get_upper_boundary_design", signature("TwoStageDesign"),
          function(
              initial_design,
              n1        = 5 * initial_design@n1,
              n2_pivots = 5 * initial_design@n2_pivots,
              c1_buffer = 2,
              c2_buffer = 2,
              ...
          ) {
              ub_design <- TwoStageDesign(
                  n1,
                  initial_design@c1f + c1_buffer,
                  initial_design@c1e + c1_buffer,
                  n2_pivots,
                  initial_design@c2_pivots + c2_buffer,
                  order = length(initial_design@c2_pivots)
              )
              ub_design@tunable <- initial_design@tunable
              return(ub_design)

          })

Try the adoptr package in your browser

Any scripts or data that you put into this service are public.

adoptr documentation built on Oct. 3, 2024, 1:08 a.m.