R/afex_plot_utils.R

Defines functions get_data_based_cis get_plot_var prep_data get_emms rename_factor_levels se afex_plot_internal

afex_plot_internal <- function(x,
                               trace,
                               panel,
                               means, 
                               data,
                               error_plot,
                               error_arg, 
                               dodge, 
                               data_plot,
                               data_geom,
                               data_alpha,
                               data_color,
                               data_arg,
                               point_arg,
                               line_arg,
                               mapping,
                               legend_title,
                               plot_first,
                               return) {
  
  if (length(trace) > 0) {
    means$trace <- interaction(means[trace], sep = "\n")
    data$trace <- interaction(data[trace], sep = "\n")
    
    if (return == "data") {
      return(list(means = means, data = data))
    } else if (return == "plot") {
      return(interaction_plot(means = means, 
                              data = data,
                              error_plot = error_plot,
                              error_arg = error_arg, 
                              dodge = dodge, 
                              data_plot = data_plot,
                              data_geom = data_geom,
                              data_alpha = data_alpha,
                              data_arg = data_arg,
                              data_color = data_color,
                              point_arg = point_arg,
                              line_arg = line_arg,
                              mapping = mapping,
                              plot_first = plot_first,
                              legend_title =  if (missing(legend_title)) 
                                paste(trace, sep = "\n") else
                                  legend_title
      ))
    }
  } else {
    if (return == "data") {
      return(list(means = means, data = data))
    } else if (return == "plot") {
      return(oneway_plot(means = means, 
                         data = data,
                         error_plot = error_plot,
                         error_arg = error_arg, 
                         data_plot = data_plot,
                         data_geom = data_geom,
                         data_alpha = data_alpha,
                         data_color = data_color,
                         data_arg = data_arg,
                         point_arg = point_arg,
                         mapping = mapping,
                         plot_first = plot_first,
                         legend_title = if (missing(legend_title)) 
                           paste(x, sep = "\n") else
                             legend_title
      ))
    }
  }
}

se <- function(x, na.rm = FALSE) sd(x, na.rm = na.rm)/sqrt(length(x))

rename_factor_levels <- function(data, factor_levels, 
                                 status_message = TRUE) {
  if (length(factor_levels) > 0) {
    if (is.null(names(factor_levels))) {
      stop("factor_levels needs to be a named list.", call. = FALSE)
    }
    if (any(!(names(factor_levels) %in% colnames(data)))) {
      if (status_message) {
        warning(
          "factor_levels: No factor named ", 
          paste(
            paste0("'", 
                   names(factor_levels)
                   [!(names(factor_levels) %in% colnames(data))],
                   "'"), 
            collapse = ", "), 
          " in data.",
          call. = FALSE
        )  
      }
      factor_levels <- factor_levels[names(factor_levels) %in% colnames(data)]
    }
    for (i in seq_along(factor_levels)) {
      if (is.null(names(factor_levels[[i]]))) {
        if (length(factor_levels[[i]]) != 
            length(levels(data[[names(factor_levels)[i]]]))) {
          stop("length of new factor_levels for '", 
               names(factor_levels)[i], "' != length of factor levels.",
               call. = FALSE)
        }
        names(factor_levels[[i]]) <- levels(data[[names(factor_levels)[i]]])
      }
      if (!is.factor(data[[names(factor_levels)[i]]])) {
        data[[names(factor_levels)[i]]] <- factor(data[[names(factor_levels)[i]]])
      }
      factor_levels[[i]] <- factor_levels[[i]][ 
        names(factor_levels[[i]]) %in% levels(data[[names(factor_levels)[i]]]) ]
      if (status_message) {
        message("Renaming/reordering factor levels of '", 
                names(factor_levels)[i], "':\n  ", 
                paste(
                  paste(
                    levels(data[[names(factor_levels)[i]]])[
                      match(names(factor_levels[[i]]), 
                            levels(data[[names(factor_levels)[i]]]))
                      ], 
                        factor_levels[[i]], sep = " -> "), 
                  collapse = "\n  ")
        )
      }
      if (length(factor_levels[[i]]) == 
          length(levels(data[[names(factor_levels)[i]]]))) {
        data[[names(factor_levels)[i]]] <- factor(
          x = data[[names(factor_levels)[i]]], 
          levels = names(factor_levels[[i]]), 
          labels = factor_levels[[i]]
        )  
      } else {
        levels(data[[names(factor_levels)[i]]])[
          match(names(factor_levels[[i]]), 
                levels(data[[names(factor_levels)[i]]]))
          ] <- factor_levels[[i]]
      }
    }
  }
  data
}

get_emms <- function(object, 
                     x,
                     trace,
                     panel,
                     emmeans_arg, 
                     factor_levels, 
                     level) {
  if (!requireNamespace("emmeans", quietly = TRUE)) {
    stop("package emmeans is required.", call. = FALSE)
  }
  
  all_vars <- c(x, trace, panel)
  emmeans_arg$options$level <- level
  emms <- as.data.frame(do.call(emmeans::emmeans, 
                                args = c(object = list(object), 
                                         specs = list(all_vars), 
                                         type = list("response"),
                                         emmeans_arg)))
  emms <- rename_factor_levels(
    data = emms, 
    factor_levels = factor_levels, 
    status_message = TRUE
  )
  
  emms$x <- interaction(emms[x], sep = "\n")
  #col_y <- colnames(emms)[which(colnames(emms) == "SE")-1]
  if (any(colnames(emms) == "SE")) {
    colnames(emms)[which(colnames(emms) == "SE")-1] <- "y"
  } else {
    colnames(emms)[grep("CL|HPD", colnames(emms))[1]-1] <- "y"
  }
  attr(emms, "dv") <- attr(object, "dv")
  attr(emms, "x") <- paste(x, collapse = " - ")
  if (length(panel) > 0) {
    emms$panel <- interaction(emms[panel], sep = "\n")
  } else {
    emms$panel <- "1"
  }
  emms$all_vars <- interaction(emms[all_vars], sep = ".")
  
  return(emms)
}

prep_data <- function(data, 
                      x,
                      trace,
                      panel, 
                      factor_levels,
                      dv_col, id) {
  all_vars <- c(x, trace, panel)
  
  data <- rename_factor_levels(
    data = data, 
    factor_levels = factor_levels, 
    status_message = FALSE
  )
  
  ## we have to make sure that if data already contains a column y, the correct
  ## one is used for aggregation here.
  ## the old code below led to problems in this case
  # colnames(data)[colnames(data) == dv_col] <- "y"
  # if (!is.numeric(data$y)) {
  #   message("transforming dv to numerical scale")
  #   data$y <- as.numeric(data$y)
  # }
  # data <- aggregate(data$y, by = data[c(all_vars,id)], 
  #                   FUN = mean, drop = TRUE)
  #colnames(data)[colnames(data) == dv_col] <- "y"
  
  if (!is.numeric(data[[dv_col]])) {
    message("transforming dv to numerical scale")
    if (is.factor(data[[dv_col]])) {
      data[[dv_col]] <- as.numeric(data[[dv_col]]) - 1
    }
    data[[dv_col]] <- as.numeric(data[[dv_col]])
  }
  data <- aggregate(data[[dv_col]], 
                    by = data[c(all_vars,id)],
                    FUN = mean, drop = TRUE)
  
  data$y <- data$x
  data$x <- interaction(data[x], sep = "\n")
  if (length(panel) > 0) {
    data$panel <- interaction(data[panel], sep = "\n")
  } else {
    data$panel <- "1"
  }
  data$all_vars <- interaction(data[all_vars], sep = ".")
  return(data)
}

get_plot_var <- function(x) {
  if (missing(x)) return()
  if (inherits(x, "formula")) {
    return(all.vars(x[[2]]))
  } else {
    return(x)
  }
}

get_data_based_cis <- function(emms, data, error, 
                               id, ## colname holding the id/grouping variable 
                               all_vars,
                               within_vars, 
                               between_vars,
                               error_level, error_ci) {
  
  error_plot <- TRUE
  ## SE/CI calculation:
  if (error == "model") {
    emms$error <- emms$SE
    # emms$lower <- emms$lower.CL
    # emms$upper <- emms$upper.CL
    col_cis <- grep("CL|HPD", colnames(emms), value = TRUE)
    col_cis <- col_cis[!(col_cis %in% all_vars)]
    emms$lower <- emms[,col_cis[1]]
    emms$upper <- emms[,col_cis[2]]
  } else if (error == "mean") {
    ses <- tapply(data$y, INDEX = list(data$all_vars), FUN = se)
    sizes <- tapply(data$y, INDEX = list(data$all_vars), FUN = length)
    stopifnot(emms$all_vars %in% names(ses))
    emms$error <- ses[emms$all_vars]
    emms$lower <- emms$y - qt(1-(1-error_level)/2, sizes - 1) * emms$error
    emms$upper <- emms$y + qt(1-(1-error_level)/2, sizes - 1) * emms$error
  } else if (error %in% c("CMO", "within")) {
    if (length(within_vars) == 0) {
      stop("within-subject SE only possible if within-subject factors present.", 
           call. = FALSE)
    }
    within_fac <- interaction(data[within_vars], sep = ".")
    indiv_means <- tapply(data$y, INDEX = data[id], FUN = mean)
    J <- length(levels(within_fac))
    ## Cosineau & O'Brien (2014), Equation 2:
    new_y <- data$y - 
      indiv_means[as.character(data[,id])] +
      mean(data$y)
    ## Cosineau & O'Brien (2014), Equation 4:
    y_bar <- tapply(new_y, INDEX = within_fac, FUN = mean)
    new_z <- sqrt(J / (J-1)) * (new_y - y_bar[within_fac]) + y_bar[within_fac]
    ses <- tapply(new_z, INDEX = list(data$all_vars), FUN = se)
    sizes <- tapply(new_z, INDEX = list(data$all_vars), FUN = length)
    stopifnot(emms$all_vars %in% names(ses))
    emms$error <- ses[emms$all_vars]
    emms$lower <- emms$y - qt(1-(1-error_level)/2, sizes - 1) * emms$error
    emms$upper <- emms$y + qt(1-(1-error_level)/2, sizes - 1) * emms$error
  } else if (error == "between") {
    if (length(between_vars) > 0) {
      between_fac <- interaction(data[between_vars], sep = ".")
    } else {
      between_fac <- factor(rep("1", nrow(data)))
    }
    indiv_means <- aggregate(data$y, 
                             by = list(
                               data[,id],
                               between_fac), 
                             FUN = mean)
    ses <- tapply(indiv_means$x, INDEX = indiv_means[["Group.2"]], FUN = se)
    sizes <- tapply(indiv_means$x, INDEX = indiv_means[["Group.2"]], FUN = length)
    
    if (length(between_vars) == 0) {
      emms$error <- ses  
      emms$lower <- emms$y - qt(1-(1-error_level)/2, sizes - 1) * emms$error
      emms$upper <- emms$y + qt(1-(1-error_level)/2, sizes - 1) * emms$error
    } else {
      emm_between <- interaction(emms[between_vars], sep = ".")
      emms$error <- ses[emm_between]
      emms$lower <- emms$y - qt(1-(1-error_level)/2, sizes[emm_between] - 1) * emms$error
      emms$upper <- emms$y + qt(1-(1-error_level)/2, sizes[emm_between] - 1) * emms$error
    }
  } else if (error == "none") {
    emms$error <- NA_real_
    emms$lower <- NA_real_
    emms$upper <- NA_real_
    error_plot <- FALSE
  }
  
  if (!error_ci) {
    emms$lower <- emms$y - emms$error
    emms$upper <- emms$y + emms$error
  }

  return(list(emms = emms, error_plot = error_plot))
}

Try the afex package in your browser

Any scripts or data that you put into this service are public.

afex documentation built on Sept. 11, 2024, 7:59 p.m.