inst/doc/agridat_graphical_gems.R

## ----setup, results="hide", echo=FALSE--------------------------------------------------
knitr::opts_chunk$set(echo=FALSE, fig.height = 5, fig.width = 5)
options(width=90)

## ----lee1, eval=TRUE, fig.height=7.5, fig.width=5---------------------------------------
library(agridat)
data(lee.potatoblight)
dat <- lee.potatoblight
# Note the progression to lower scores as time passes in each year
skp <- c(rep(0,10),
         rep(0,7),1,1,1,
         rep(0,8),1,1,
         rep(0,6),1,1,1,1,
         rep(0,5),1,1,1,1,1,
         rep(0,5),1,1,1,1,1,
         rep(0,6),1,1,1,1,
         rep(0,5),1,1,1,1,1,
         rep(0,5),1,1,1,1,1,
         rep(0,5),1,1,1,1,1)
if(require("desplot")){
  desplot(dat, y ~ col*row|date,
          main="lee.potatoblight", #col.regions=RedGrayBlue,
          between=list(y=.3), strip.cex =.6,
          layout=c(10,11), skip=as.logical(skp))
}

## ----lee2, eval=TRUE--------------------------------------------------------------------
library(agridat)
# 1983 only.  I.Hardy succumbs quickly
dat <- lee.potatoblight
dat$dd <- as.Date(dat$date)
d83 <- droplevels(subset(dat, year==1983))
if(require("latticeExtra")){
  foo <- xyplot(y ~ dd|gen, d83, group=rep,
         xlab="Date", ylab="Blight resistance score",
         main="lee.potatoblight 1983", as.table=TRUE,
         par.settings=list(
           superpose.symbol=list(col=c("black","red","royalblue","#009900","dark orange"),
             pch=c("1","2","3","4","5"))),
         scales=list(alternating=FALSE, x=list(rot=90, cex=.7)))
  foo + xyplot(y ~ dd|gen, d83, subset=year==1983, type='smooth', col='gray80')
}

## ----harrison, eval=TRUE, fig.height=6--------------------------------------------------
library(agridat)
data(harrison.priors)
d1 <- subset(harrison.priors, substance=="daidzein")
d1 <- d1[ , c("source","number","min","max")]
out <- data.frame(source=vector("character"),
                  vals=vector("numeric"))
for(ii in 1:nrow(d1)){
  n <- d1[ii,'number']
  mi <- d1[ii,'min']; ma <- d1[ii,'max']
  mu <- mean(log(c(mi,ma)))
  sig <- (log(mi) - mu ) / qnorm(1/(1+n))
  vals <- exp(mu + sig*qnorm(seq(1/(1+n), to=n/(1+n), length=n)))
  out <- rbind(out, data.frame(source=d1[ii,'source'], vals=vals))
}
out <- droplevels(out) # Extra levels exist in d1
if(require("latticeExtra")) {
  foo0 <- dotplot(source ~ vals, out, 
                  main="harrison.priors", xlab="Daidzein level",
                  panel=function(x,y,...){
                    panel.dotplot(x,y,...)
                    #browser()
                    # Minimum for each row
                    x2l <- tapply(x, y, min)
                    x2r <- tapply(x, y, max)
                    y2 <- tapply(y, y, "[", 1)
                    panel.xyplot(x2l, y2, pch=16, cex=1.5, col="navy")
                    panel.xyplot(x2r, y2, pch=16, cex=1.5, col="navy")
                  },
                  # Hack.  Add blanks for extra space on graph
                  ylim=c(levels(out$source),"","","","prior","Constructed","",""))
  
  # Now calculate parameters for a common lognormal distribution
  mu0 <- mean(log(out$vals))
  sd0 <- sd(log(out$vals))
  xvals <- seq(0,2000, length=100)
  library("latticeExtra")
  foo0 + xyplot((19+4000*dlnorm(xvals, mu0, sd0))~xvals, type='l',
                panel=function(x,y,...){
                  panel.xyplot(x,y,...)
                  panel.abline(h=19, col="gray90")
                })
}

## ----mead, eval=TRUE--------------------------------------------------------------------
library(agridat)
data(mead.germination)
dat <- mead.germination
# dat <- transform(dat, concf=factor(conc))

# Use log conc as a covariate.

# Note, my graph showing the density of the fit is similar to graphs
# found at the following site.  Did I get my idea here?  I don't know.
# http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture18.htm#numerical

dat <- transform(dat, logconc=log(conc+.01))
m6 <- glm(cbind(germ, seeds-germ) ~ temp + temp:logconc, data=dat,
          family=binomial(link="logit"))

# Estimates of p for the binomial densities
newb <- expand.grid(temp=c('T1','T2','T3','T4'), logconc=log(c(0,.1,1,10)+.01))
newb$pct <- predict(m6, new=newb, type='response')
# Binomial density
if(require("latticeExtra")){
  foob <- xyplot(pct~logconc |temp, newb,
                 xlim=c(-5.5, 4.5), ylim=c(-2, 53), as.table=TRUE,
                 xlab="Log concentration",
                 ylab="Seeds germinating (out of 50).  Binomial density.",
                 main="mead.germination", #layout=c(4,1),
                 panel=function(x,y,...){
                   for(ix in 1:4){
                     quan <- qbinom(c(.025, .975), size=50, prob=y[ix])
                     yval <- seq(min(quan), max(quan), by=1)
                     off <- x[ix]
                     xl <- off + rep(0, length(yval))
                     # Constant multiuplier of 8 chosen by trial and error
                     xr <- off + 8 * dbinom(yval, size=50, prob=y[ix])
                     panel.segments(xl,yval,xr, yval, cex=.35, lwd=3, col="gray70")
                   }
                 })
  
  # Add mean response line with equally-spaced points on the log scale
  newl <- expand.grid(temp=c('T1','T2','T3','T4'),
                     logconc=seq(log(.01), log(10.01), length=50))
  newl$pct <- predict(m6, new=newl, type='response')
  # Logistic curve
  fool <- xyplot(pct~logconc|temp, newl,
                 panel=function(x,y,...){
                   panel.points(x, 50*y, type='l', col='blue')
                 })
  
  # Data points last, on top of everything
  food <- xyplot(germ~logconc|temp, dat, layout=c(4,1),
         ylab="Seeds germinating (out of 50)", cex=1.5, pch=20, col='black')
  foob + fool + food
}

## ----gomez, eval=TRUE-------------------------------------------------------------------
library(agridat)
data(gomez.stripsplitplot)
dat <- gomez.stripsplitplot

# Layout
if(require("desplot")){
  desplot(dat, gen~col*row,
          out1=rep, col=nitro, text=planting, cex=1,
          main="gomez.stripsplitplot")
}

## ----gomez2, eval=TRUE------------------------------------------------------------------
library(agridat)
data(gomez.splitsplit)
dat <- gomez.splitsplit
dat$nitrogen <- factor(dat$nitro)
if(require("HH")){
  #position(dat$rep) <- position(dat$management) <-
  #  position(dat$gen) <- c(10,70,130)
  #position(dat$nitrogen) <- c(0,50,80,110,140)
  interaction2wt(yield~rep+nitrogen+management+gen, data=dat,
                 main="gomez.splitsplit",
                 x.between=0, y.between=0,
                 relation=list(x="free", y="same"),
                 rot=c(90,0), xlab="",
                 par.strip.text.input=list(cex=.8))
}

## ----keen, eval=TRUE, fig.width=7, fig.height=7.5---------------------------------------
library(agridat)
data(keen.potatodamage)
dat <- keen.potatodamage

# Energy E1, Rod R4, Weight W1 have higher proportions of severe damage
# Rod 8 has the least damage
d2 <- xtabs(count~energy+rod+gen+weight+damage, data=dat)
mosaicplot(d2, color=c("lemonchiffon1","moccasin","lightsalmon1","indianred"),
           xlab="Energy / Genotype", ylab="Rod / Weight",
           main="keen.potatodamage",
           off=c(3,10,10,8,0),border="gray50")


## ----wright, eval=TRUE------------------------------------------------------------------
library(agridat)
data(minnesota.barley.yield)
data(minnesota.barley.weather)
dat <- minnesota.barley.yield
datw <- minnesota.barley.weather

# Weather trends over time
if(require("latticeExtra")){
  #useOuterStrips(xyplot(cdd~mo|year*site, datw, groups=year,
  #main="minnesota.barley", xlab="month", ylab="Cooling degree days",
  #subset=(mo > 3 & mo < 10), scales=list(alternating=FALSE),
  #type='l', auto.key=list(columns=5)))
    
  # Total cooling/heating/precip in Apr-Aug for each site/yr
  ww <- subset(datw, mo>=4 & mo<=8)
  ww <- aggregate(cbind(cdd,hdd,precip)~site+year, data=ww, sum)
    
  # Average yield per each site/env
  yy <- aggregate(yield~site+year, dat, mean)
    
  minn <- merge(ww, yy)
    
  
  # Higher yields generally associated with cooler temps, more precip
  library("reshape2")
  me <- melt(minn, id.var=c('site','year'))
  mey <- subset(me, variable=="yield")
  mey <- mey[,c('site','year','value')]
  names(mey) <- c('site','year','y')
  mec <- subset(me, variable!="yield")
  names(mec) <- c('site','year','covar','x')
  mecy <- merge(mec, mey)
  mecy$yr <- factor(mecy$year)
  oldpar <- tpg <- trellis.par.get()
  tpg$superpose.symbol$pch <- substring(levels(mecy$yr),4) # Last digit of year
  trellis.par.set(tpg)
  foo <- xyplot(y~x|covar*site, data=mecy, groups=yr, cex=1, ylim=c(5,65),
                xlab="Weather covariate", ylab="Barley yield",
                main="minnesota.barley",
                panel=function(x,y,...) {
                  panel.lmline(x,y,..., col="gray")
                  panel.superpose(x,y,...)
                },
                scales=list(x=list(relation="free")))
  foo <- useOuterStrips(foo, strip.left = strip.custom(par.strip.text=list(cex=.7)))
  combineLimits(foo, margin.x=2L)
}

## ----crossa, eval=FALSE, message=FALSE--------------------------------------------------
#  library(agridat)
#  # Specify env.group as column in data frame
#  data(crossa.wheat)
#  dat2 <- crossa.wheat
#  if(require("gge")){
#    m4 <- gge(yield~gen*loc, dat2, env.group=locgroup, scale=FALSE)
#    # plot(m4)
#    biplot(m4, lab.env=TRUE, main="crossa.wheat")
#  }

## ----nebr1, eval=TRUE-------------------------------------------------------------------

library(agridat)
data(nebraska.farmincome)
dat <- nebraska.farmincome
dat$stco <- paste0('nebraska,', dat$county)
dat <- transform(dat, crop=crop/1000, animal=animal/1000)

if(require("maps") & require("mapproj") & require("latticeExtra")){

  # Raw, county-wide incomes.  Note the outlier Cuming county
  redblue <- colorRampPalette(c("firebrick", "lightgray", "#375997"))
  mapplot(stco ~ crop + animal, data = dat,
          scales = list(draw = FALSE),
          main="nebraska.farmincome",
          xlab="", ylab="Income ($1000) per county",
          colramp=redblue,
          map = map('county', 'nebraska', plot = FALSE, fill = TRUE,
                    projection = "mercator"))
}


## ----nebr2, eval=TRUE-------------------------------------------------------------------

# Now scale to income/mile^2
dat <- transform(dat, crop.rate=crop/area, animal.rate=animal/area)
# And use manual breakpoints.
if(require("maps") & require("mapproj") & require("latticeExtra")){
mapplot(stco ~ crop.rate + animal.rate, data = dat,
        scales = list(draw = FALSE),
        main="nebraska.farmincome",
        xlab="", ylab="Income ($1000) per square mile (percentile breaks)",
        map = map('county', 'nebraska', plot = FALSE, fill = TRUE,
                  projection = "mercator"),
        colramp=redblue,
        #breaks=quantile(c(dat$crop.rate, dat$animal.rate),
        #                c(0,.1,.2,.4,.6,.8,.9,1), na.rm=TRUE)
        # To eliminate dependency on classInt package, hardcode the breakpoints
        #breaks=classIntervals(na.omit(c(dat$crop.rate, dat$animal.rate)), n=7, style='fisher')$brks
        breaks=c(0,.049, .108, .178, .230, .519, .958, 1.31)
        )
}

## ----lasrosas, eval=TRUE, fig.height=7.5------------------------------------------------
library(agridat)
data(lasrosas.corn)
dat <- lasrosas.corn

# yield map
redblue <- colorRampPalette(c("firebrick", "lightgray", "#375997"))
if(require("latticeExtra")){
  foo1 <- levelplot(yield ~ long*lat|factor(year), data=dat,
            aspect=1, layout=c(2,1),
            main="lasrosas.corn grain yield (qu/ha)", xlab="Longitude", ylab="Latitude",
            scales=list(alternating=FALSE),
            prepanel = prepanel.default.xyplot,
            panel = panel.levelplot.points,
            type = c("p", "g"), col.regions=redblue)
  
  # Experiment design...shows problems in 2001
  dat <- lasrosas.corn
  
  xl <- range(dat$long)
  yl <- range(dat$lat)

  sseq=matrix(c(
    35, 0.9, 0.5,  # brown
    35, 0.8, 0.6,
    35, 0.7, 0.7,
    35, 0.6, 0.8,
    35, 0.5, .9,
    35, 0.4, 1,
    80, 0.9, 0.5,  # green
    80, 0.8, 0.6,
    80, 0.7, 0.7,
    80, 0.6, 0.8,
    80, 0.5, 0.9,
    80, 0.4, 1,
    190, 0.9, 0.5,  # blue
    190, 0.8, 0.6,
    190, 0.7, 0.7,
    190, 0.6, 0.8,
    190, 0.5, 0.9,
    190, 0.4, 1
    ), ncol=3, byrow=TRUE)
  sseq <- hsv(sseq[,1]/360, sseq[,2], sseq[,3])
  
  dat$repnf <- factor(paste(dat$rep,dat$nf))
  # levels(dat$repnf) # check the order
  #dat <- transform(dat, col=as.character(sseq[as.numeric(factor(paste(dat$rep,dat$nf)))]))
  
  # By default, manual specification of col/pch does not work with multiple panels.
  # Define a custom panel function to make it work
  mypanel <- function(x,y,...,subscripts,col,pch) {
    panel.xyplot(x,y,col=col[subscripts],pch=pch[subscripts], ...)
  }
  
  foo2 <- xyplot(lat~long|factor(year), data=dat,
                 aspect=1, layout=c(2,1),
                 xlim=xl, ylim=yl, cex=0.9,
                 main="lasrosas.corn experiment design", xlab="", ylab="",
                 scales=list(alternating=FALSE),
                 col=sseq[dat$repnf],
                 #pch=levels(dat$topo)[dat$topo],
                 pch=c('-','+','/','\\')[dat$topo],
                 panel=mypanel)
  
  plot(foo1, split = c(1, 1, 1, 2))
  plot(foo2, split = c(1, 2, 1, 2), newpage = FALSE)
}

## ----nass, eval=TRUE, fig.height=8------------------------------------------------------
library(agridat)
data(nass.corn)
dat <- nass.corn
dat$acres <- dat$acres/1000000

# Use only states that grew at least 100K acres of corn in 2011
keep <- droplevels(subset(dat, year == 2011 & acres > .1))$state
dat <- subset(dat, state != "Delaware")
dat <- subset(dat, state != "Idaho")
dat <- subset(dat, state != "Washington")
dat <- subset(dat, state != "California")
dat <- droplevels(subset(dat, is.element(state, keep)))
# Acres of corn grown each year
require("lattice")
xyplot(acres ~ year|state, dat, type='l', as.table=TRUE,
       layout=c(6,5),
       strip=strip.custom(par.strip.text=list(cex=.5)),
       main="nass.corn", xlab="Year", ylab="Million acres of corn")

Try the agridat package in your browser

Any scripts or data that you put into this service are public.

agridat documentation built on Oct. 27, 2024, 5:07 p.m.