R/apollo_modelOutput.R

Defines functions apollo_modelOutput

Documented in apollo_modelOutput

#' Prints estimation results to console
#' 
#' Prints estimation results to console. Amount of information presented can be adjusted through arguments.
#' 
#' Prints to screen the output of a model previously estimated by apollo_estimate()
#' @param model Model object. Estimated model object as returned by function \link{apollo_estimate}.
#' @param modelOutput_settings List. Contains settings for this function. User input is required for all settings except those with a default or marked as optional. 
#'                             \itemize{
#'                               \item \strong{\code{printChange}}: Logical. TRUE for printing difference between starting values and estimates. FALSE by default.
#'                               \item \strong{\code{printClassical}}: Logical. TRUE for printing classical standard errors. TRUE by default.
#'                               \item \strong{\code{printCorr}}: Boolean. TRUE for printing parameters correlation matrix. If \code{printClassical=TRUE}, both classical and robust matrices are printed. For Bayesian estimation, this setting is used for the covariane of random parameters. FALSE by default.
#'                               \item \strong{\code{printCovar}}: Boolean. TRUE for printing parameters covariance matrix. If \code{printClassical=TRUE}, both classical and robust matrices are printed. For Bayesian estimation, this setting is used for the correlation of random parameters. FALSE by default.
#'                               \item \strong{\code{printDataReport}}: Logical. TRUE for printing summary of choices in database and other diagnostics. FALSE by default.
#'                               \item \strong{\code{printFixed}}: Logical. TRUE for printing fixed parameters among estimated parameter. TRUE by default.
#'                               \item \strong{\code{printFunctions}}: Logical. TRUE for printing apollo_control, apollo_randCoeff (when available), apollo_lcPars (when available) and apollo_probabilities. FALSE by default.
#'                               \item \strong{\code{printHBconvergence}}: Boolean. TRUE for printing Geweke convergence tests. FALSE by default.                               
#'                               \item \strong{\code{printHBiterations}}: Boolean. TRUE for printing an iterations report for HB estimation. TRUE by default.                               
#'                               \item \strong{\code{printModelStructure}}: Logical. TRUE for printing model structure. TRUE by default.
#'                               \item \strong{\code{printOutliers}}: Logical or Scalar. TRUE for printing 20 individuals with worst average fit across observations. FALSE by default. If Scalar is given, this replaces the default of 20.
#'                               \item \strong{\code{printPVal}}: Logical or Scalar. TRUE or 1 for printing p-values for one-sided test, 2 for printing p-values for two-sided test, FALSE for not printing p-values. FALSE by default.
#'                               \item \strong{\code{printT1}}: Logical. If TRUE, t-test for H0: apollo_beta=1 are printed. FALSE by default.
#'                             }
#' @return A matrix of coefficients, s.d. and t-tests (invisible)
#' @export
#' @importFrom coda geweke.diag
#' @importFrom utils capture.output
apollo_modelOutput=function(model, modelOutput_settings=NA){
  if(length(modelOutput_settings)==1 && is.na(modelOutput_settings)) modelOutput_settings=list()
  if(is.null(modelOutput_settings[["printModelStructure"]])) modelOutput_settings[["printModelStructure"]] = TRUE
  if(is.null(modelOutput_settings[["printDataReport"]])) modelOutput_settings[["printDataReport"]] = FALSE
  if(!is.null(modelOutput_settings[["printDiagnostics"]])){
    modelOutput_settings[["printModelStructure"]] = modelOutput_settings[["printDiagnostics"]]
    modelOutput_settings[["printDataReport"]]     = modelOutput_settings[["printDiagnostics"]]
  } 
  if(is.null(modelOutput_settings[["printClassical"]])) modelOutput_settings[["printClassical"]] = TRUE
  if(is.null(modelOutput_settings[["printPVal"]])) modelOutput_settings[["printPVal"]] = FALSE
  if(is.null(modelOutput_settings[["printT1"]])) modelOutput_settings[["printT1"]] = FALSE
  if(is.null(modelOutput_settings[["printCovar"]])) modelOutput_settings[["printCovar"]] = FALSE
  if(is.null(modelOutput_settings[["printCorr"]])) modelOutput_settings[["printCorr"]] = FALSE
  if(is.null(modelOutput_settings[["printHBconvergence"]])) modelOutput_settings[["printHBconvergence"]] = FALSE
  if(is.null(modelOutput_settings[["printHBiterations"]])) modelOutput_settings[["printHBiterations"]] = FALSE
  if(is.null(modelOutput_settings[["printOutliers"]])) modelOutput_settings[["printOutliers"]] = FALSE
  if(is.null(modelOutput_settings[["printChange"]])) modelOutput_settings[["printChange"]] = FALSE
  if(is.null(modelOutput_settings[["printFunctions"]])) modelOutput_settings[["printFunctions"]] = FALSE
  if(is.null(modelOutput_settings[["printFixed"]])) modelOutput_settings[["printFixed"]] = TRUE
  
  printClassical   = modelOutput_settings[["printClassical"]]
  printPVal        = modelOutput_settings[["printPVal"]]
  printT1          = modelOutput_settings[["printT1"]]
  printDiagnostics = modelOutput_settings[["printDiagnostics"]]
  printCovar       = modelOutput_settings[["printCovar"]]
  printCorr        = modelOutput_settings[["printCorr"]]
  printHBconvergence = modelOutput_settings[["printHBconvergence"]]
  printHBiterations = modelOutput_settings[["printHBiterations"]]
  printOutliers    = modelOutput_settings[["printOutliers"]]
  printChange      = modelOutput_settings[["printChange"]]
  printFunctions   = modelOutput_settings[["printFunctions"]]
  printFixed       = modelOutput_settings[["printFixed"]]
  
  test <- !is.null(model$manualScaling) && length(model$manualScaling)==1 && is.logical(model$manualScaling)
  if(test) scaling_used <- model$manualScaling else {
    test <- !is.null(model$scaling) && is.vector(model$scaling) && is.numeric(model$scaling) && !all(model$scaling==1)
    if(test) scaling_used <- TRUE else scaling_used <- FALSE
  }
  
  # ####################### #
  #### MODEL DESCRIPTION ####
  # ####################### #
  
  apollo_control <- model$apollo_control
  #nParams     <- length(model$apollo_beta)
  #nFreeParams <- nParams
  #if(!is.null(model$apollo_fixed)) nFreeParams <- nFreeParams - length(model$apollo_fixed)
  
  
  
  # Printing model information
  if("package:apollo" %in% search()){
    apolloVersion <- tryCatch(utils::packageDescription("apollo", fields = "Version"),
                              warning=function(w) return("alpha"),
                              error=function(e) return("alpha"))
  } else apolloVersion <- "alpha"
  
  #cat('Model run using Apollo for R, version', apolloVersion, 'on', Sys.info()['sysname'], 'by', Sys.info()['user'], '\n')
  cat("Model run by ", Sys.info()['user'], " using Apollo ", apolloVersion, 
      " on R ", paste0(version$major, ".", version$minor), 
      " for ", Sys.info()['sysname'], ".\n", sep="")
  cat("Please acknowledge the use of Apollo by citing Hess & Palma (2019)\n")
  cat("  DOI 10.1016/j.jocm.2019.100170\n")
  cat("  www.ApolloChoiceModelling.com\n\n")
  
  cat("Model name                                  : ", model$apollo_control$modelName,"\n", sep="")
  cat("Model description                           : ", model$apollo_control$modelDescr,"\n", sep="")
  cat("Model run at                                : ", paste(model$startTime),"\n", sep="")
  cat("Estimation method                           : ", model$estimationRoutine, "\n", sep="")
  if(!apollo_control$HB){
    cat("Model diagnosis                             : ",model$message,"\n", sep="")
    if(!is.null(model$hessianEigenValue)){
      isC  <- is.complex(model$hessianEigenValue)
      anyZ <- !isC && any(model$hessianEigenValue==0)
      anyN <- !isC && any(model$hessianEigenValue<0)
      anyP <- !isC && any(model$hessianEigenValue>0)
      if(isC) txt <- c("Non-symmetrical hessian", "Complex eigenvalues")
      if(!isC && all(model$hessianEigenValue<0)) txt <- c("Maximum found", "Negative definite")
      if(!isC && anyZ) txt <- c("Inconclusive test", "Some eigenvalues are zero")
      if(!isC && !anyZ && anyN && anyP) txt <- c("Saddle point found", "Some eigenvalues are positive and others negative")
      if(!isC && all(model$hessianEigenValue>0)) txt <- c("Minimum found", "Positive definite")
      if(isC) txt[3] <- "NA" else txt[3] <- as.character(round(max(model$hessianEigenValue),6))
      if(!isC && all(model$hessianEigenValue<0)){
        txt[4] <- as.character(signif(max(model$hessianEigenValue)/min(model$hessianEigenValue),6))
      }else{
        txt[4] <- "not calculated (Hessian is not negative definite)"
      }
      cat("Optimisation diagnosis                      : ", txt[1], "\n", 
          "     hessian properties                     : ", txt[2], "\n", 
          "     maximum eigenvalue                     : ", txt[3], "\n",
          "     reciprocal of condition number         : ", txt[4], "\n", 
          sep="")
      rm(isC, anyZ, anyN, anyP, txt)
    } else if(!is.null(model$eigValue) && !anyNA(model$eigValue)){
      cat("Min abs eigenvalue of Hessian               : ",round(min(abs(model$eigValue)),6),"\n")
      if(any(model$eigValue>0)) apollo_print("Some eigenvalues of Hessian are positive, indicating potential problems!") 
    }
  }
  cat("Number of individuals                       : ", model$nIndivs,"\n", sep="")
  cat("Number of rows in database                  : ", model$nObs,"\n", sep="")
  if(!is.null(model$nObsTot)){
    cat('Number of modelled outcomes                 : ', sum(model$nObsTot), '\n', sep='')
    if(length(model$nObsTot)>1) for(i in names(model$nObsTot)){
      if(nchar(i)>26) txt <- substr(i, 1, 26) else txt <- i # max 26 characters for the component name
      if(nchar(txt)<26) txt <- paste0(c(rep(' ', 26 - nchar(txt)), txt), collapse='')
      cat('      ', txt, ' : ', model$nObsTot[i], '\n', sep='')
    }; cat('\n')
  }
  cat("Number of cores used                        : ",model$apollo_control$nCores,"\n")
  if(model$apollo_control$mixing){
    d <- model$apollo_draws
    if(d$interNDraws>0 && length(c(d$interUnifDraws, d$interNormDraws))>0){
      cat("Number of inter-individual draws            : ", d$interNDraws, ' (', d$interDrawsType, ')', "\n", sep='')
    }
    if(d$intraNDraws>0 && length(c(d$intraUnifDraws, d$intraNormDraws))>0){
      cat("Number of intra-individual draws                : ", d$intraNDraws, ' (', d$intraDrawsType, ')', "\n", sep='')
    }
    if(!model$apollo_control$panelData & model$apollo_control$mixing & d$interNDraws>0){
      cat("WARNING: Inter-individual draws were used\n")
      cat("         without a panel data structure.\n")
    }
    rm(d)
  } else { if(!apollo_control$HB) cat("Model without mixing\n") }
  cat("\n")
  
  
  # ####################### #
  #### HB OUTPUT         ####
  # ####################### #
  if(apollo_control$HB){
    apollo_HB <- model$apollo_HB
    cat("Estimation carried out using RSGHB\n")
    cat("Burn-in iterations                          : ",model$gNCREP,"\n", sep="")
    cat("Post burn-in iterations                     : ",model$gNEREP,"\n", sep="")
    
    #cat("LL(start)                        : ",model$LLStart,"\n", sep="")
    #cat("LL(0)                            : ",model$LL0[1],"\n", sep="")
    #cat("Average post. LL post burn-in    : ",mean(colSums(log(model$cmcLLout))),"\n",sep="")
    #cat("Average post. RLH post burn-in   : ",round(mean(colMeans((model$cmcRLHout))),4),"\n",sep="")
    cat("\n")
    apollo_print("Classical model fit statistics were calculated at parameter values obtained using averaging across the post burn-in iterations.")
    cat("LL(start)                                   : ",round(model$LLStart,2),"\n", sep="")
    if(length(model$LLout)==1) cat("LL at equal shares, LL(0)                   : ",ifelse(is.numeric(model$LL0[1]),round(model$LL0[1],2),"Not applicable"),"\n", sep="")
    if(length(model$LLout)>1 ) cat("LL (whole model) at equal shares, LL(0)     : ",ifelse(is.numeric(model$LL0[1]),round(model$LL0[1],2),"Not applicable"),"\n", sep="")
    if(length(model$LLout)==1) cat("LL at observed shares, LL(C)                : ",ifelse(is.numeric(model$LLC[1]),round(model$LLC[1],2),"Not applicable"),"\n", sep="")
    if(length(model$LLout)>1 ) cat("LL (whole model) at observed shares, LL(C)  : ",ifelse(is.numeric(model$LLC[1]),round(model$LLC[1],2),"Not applicable"),"\n", sep="")
    if(length(model$LLout)==1) cat("LL(final)                                   : ",round(model$maximum,2),"\n",sep="")
    if(length(model$LLout)>1 ) cat("LL(final, whole model)                      : ",round(model$maximum,2),"\n",sep="")
    cat("Rho-squared vs equal shares                  : ", ifelse(!is.numeric(model$rho2_0   ), "Not applicable", round(model$rho2_0   , 4)),"\n")
    cat("Adj.Rho-squared vs equal shares              : ", ifelse(!is.numeric(model$adjRho2_0), "Not applicable", round(model$adjRho2_0, 4)),"\n")
    cat("Rho-squared vs observed shares               : ", ifelse(!is.numeric(model$rho2_C   ), "Not applicable", round(model$rho2_C   , 4)),"\n")
    cat("Adj.Rho-squared vs observed shares           : ", ifelse(!is.numeric(model$adjRho2_C), "Not applicable", round(model$adjRho2_C, 4)),"\n")
    cat("AIC                                         : ",round(model$AIC, 2),"\n")
    cat("BIC                                         : ",round(model$BIC, 2),"\n")
    cat("\n")
    cat("Equiv. estimated parameters                 :  ", model$nFreeParams,"\n", sep="")
    if(model$HB_n_nonrandom>0){
    cat(" (non-random parameters                     :  ", model$HB_n_nonrandom,")\n", sep="")
    }
    if(model$HB_n_random_means>0){
    cat(" (means of random parameters                :  ", model$HB_n_random_means,")\n", sep="")
    }
    if(model$HB_n_random_covar>0){
    cat(" (covariance matrix terms                   :  ", model$HB_n_random_covar,")\n", sep="")
    }

    if(length(model$LLout)>1){
      cat("\n")
      for(j in 2:length(model$LLout)){
        nam <- names(model$LLout)[j]
        sp1 <- ifelse(6+nchar(nam)<33, paste0(rep(" ",33-nchar(nam)-6), collapse=""), "")
        sp2 <- ifelse(9+nchar(nam)<33, paste0(rep(" ",33-nchar(nam)-10), collapse=""), "")
        cat("LL(0,", nam, ")", sp1, ": ", ifelse(is.finite(model$LL0[j]), round(model$LL0[j],2), "Not applicable"),"\n", sep="")
        #cat("LL(final,", nam, ")", sp2, ": ", model$LLout[j], sep="")
        txt <- paste0("LL(final,", nam, ")", sp2, ": ", round(model$LLout[j],2))
        if(!is.finite(model$LLout[j])) cat(txt, " Likelihood equal to zero for at least\n", 
                                           paste0(rep(" ", nchar(txt)), collapse=""), 
                                           " one individual in this component.", sep="") else cat(txt)
        cat('\n')
      }; rm(nam, sp1, sp2)
    }
    cat("\n")
    f <- function(t){
      tmpH <- floor(t/60^2)
      tmpM <- floor((t-tmpH*60^2)/60)
      tmpS <- round(t-tmpH*60^2-tmpM*60,2)
      paste(formatC(tmpH,width=2,format='d',flag=0),
            formatC(tmpM,width=2,format='d',flag=0),
            tmpS,sep=':')
    }
    cat("Time taken (hh:mm:ss)                       : ",f(model$timeTaken),"\n")
    cat("     pre-estimation                         : ",f(model$timePre),"\n")
    cat("     estimation                             : ",f(model$timeEst),"\n")
    cat("     post-estimation                        : ",f(model$timePost),"\n")
    cat("\n\n")
    
    cat("Summary of parameter chains\n\n")
    
    ans <- list()
    
    if(length(apollo_HB$gVarNamesFixed)>0 | length(model$apollo_fixed)>0){
      cat("Non-random coefficients","\n")
      if(scaling_used) cat("These outputs have had the scaling used in estimation applied to them\n\n")
      print(round(model$HB_chains_non_random,4))
      cat("\n")
      ans[["non_random"]] <- model$HB_chains_non_random
    }
    
    apollo_HB$gVarNamesFixed <- model$HB_names_nonrandom_params
    apollo_HB$gVarNamesNormal <- model$HB_names_random_params
    if(any(!is.null(apollo_HB$gVarNamesNormal)) && length(apollo_HB$gVarNamesNormal)>0){
      cat("Results for posterior means for random coefficients","\n")
      if(scaling_used) cat("These outputs have had the scaling used in estimation applied to them\n")
      print(round(model$HB_posterior_means_summary,4))
      cat("\n")
      
      cat("Summary of distributions of random coeffients (after distributional transforms)","\n")
      if(scaling_used) cat("These outputs have had the scaling used in estimation applied to them\n")
      print(round(model$HB_random_params_mean_sd,4))
      cat("\n")

      if(length(apollo_HB$gVarNamesNormal)>1){
        if(printCovar){
          cat("Covariance matrix of random coeffients (after distributional transforms)","\n")
          if(scaling_used) cat("These outputs have had the scaling used in estimation applied to them\n")
          print(round(model$HB_random_params_covar,4))
          cat("\n")
        }
        if(printCorr){
          cat("Correlation matrix of random coeffients (after distributional transforms)","\n")
          if(scaling_used) cat("These outputs have had the scaling used in estimation applied to them\n")
          print(round(model$HB_random_params_corr,4))
          cat("\n")
        }
      }
      
      cat("Upper level model results for mean parameters for underlying Normals","\n")
      if(scaling_used) cat("These outputs have NOT had the scaling used in estimation applied to them\n")
      print(round(model$HB_chains_normals_means,4))
      cat("\n")

      if(printCovar){
      cat("Upper level model results for covariance matrix for underlying Normals (means across iterations)","\n")
      if(scaling_used) cat("These outputs have NOT had the scaling used in estimation applied to them\n")
      print(round(model$HB_chains_normals_mean_of_covar,4))
      cat("\n")
      
      cat("Upper level model results for covariance matrix for underlying Normals (SD across iterations)","\n")
      if(scaling_used) cat("These outputs have NOT had the scaling used in estimation applied to them\n")
      print(round(model$HB_chains_normals_sd_of_covar,4))
      cat("\n")
      }
      
     
      
      if(printHBconvergence){
        cat("Chain convergence report (Geweke test)\n\n")
        if(!is.null(model[["HB_Geweke_test_non_random"]])){
          cat("Fixed (non random) parameters (t-test value for Geweke test)\n")
          #tmp <- coda::geweke.diag(model$HB_iterations_non_random[,2:(ncol(model$HB_iterations_non_random))], frac1=0.1, frac2=0.5)[[1]]
          #names(tmp) <- model$HB_names_nonrandom_params
          #print( round(tmp, 4) )
          print( round(model$HB_Geweke_test_non_random, 4) )
          cat("\n")
        }
        if(!is.null(model[["HB_Geweke_test_means"]])){
          cat("Random parameters (t-test value for Geweke test)\n")
          #tmp <- coda::geweke.diag(model$HB_iterations_means[,2:(ncol(model$HB_iterations_means))], frac1=0.1, frac2=0.5)[[1]]
          #print( round(tmp, 4) )
          print( round(model$HB_Geweke_test_means, 4) )
          cat("\n")
        }
        if(!is.null(model[["HB_Geweke_test_covar"]])){
          cat("Covariances of random parameters (t-test value for Geweke test)\n")
          # This assumes the matrix is square
          #tmp <- c()
          #for(i in 1:dim(model$HB_iterations_covar)[1]) for(j in 1:i){
          #  if(i==1 & j==1) Dmatrix <- as.matrix(model$HB_iterations_covar[i,j,]) else Dmatrix <- cbind(Dmatrix, as.vector(model$HB_iterations_covar[i,j,]))
          #  tmp <- c(tmp, paste(colnames(model$HB_iterations_means)[i+1],colnames(model$HB_iterations_means)[j+1], sep="_"))
          #}
          #colnames(Dmatrix) <- tmp
          #tmp <- coda::geweke.diag(Dmatrix, frac1=0.1, frac2=0.5)[[1]]
          #print( round(tmp, 4) )
          print( round(model$HB_Geweke_test_covar, 4) )
        }
        cat("\n\n")
      }
      
      if(printHBiterations){
        cat("\nIteration details (overview)")
        cat("\n----------------------------\n")
        print(model[["HB_iterations_detail"]], row.names = FALSE)
      }
      
      ### 3 Feb
      
      if(printFunctions){
        cat("\nSettings and functions used in model definition:\n")
        cat("\napollo_control")
        cat("\n--------------\n")
        tmp=model$apollo_control
        tmp$cpp=NULL
        tmp$matrixMult=NULL
        tmp$subMaxV=NULL
        txt=t(data.frame(tmp))
        colnames(txt)="Value"
        print(txt)
        cat("\napollo_HB")
        cat("\n---------\n")
        print(model$apollo_HB)
        ### start changes 12 April 2023
        if (length(model[["HB_names_nonrandom_params"]]) > 0) {
          cat("\nNon-random parameters:")
          cat("\n----------------------n")
          cat(paste0(model[["HB_names_nonrandom_params"]], "\n", collapse = ""))
        }
        if (length(model[["HB_names_random_params"]]) > 0) {
          cat("\nRandom parameters (Distribution):")
          cat("\n---------------------------------n")
          cat(paste0(paste(model[["HB_names_random_params"]], "(", model[["distributions"]], 
                           ")"), "\n"), collapse = "", sep = "")
        }
        if (!is.null(model[["constraints"]])) {
          cond <- c("<", ">")
          cat("\nConstraints applied to random parameters (param1 - inequality - param2):")
          cat("\n------------------------------------------------------------------------\n")
          for (i in 1:length(model[["constraints"]])) {
            if (model[["constraints"]][[i]][3] == 0) {
              cat(model[["HB_names_random_params"]][model[["constraints"]][[i]][1]], 
                  cond[model[["constraints"]][[i]][2]], 0, 
                  "\n")
            }
            if (model[["constraints"]][[i]][3] != 0) {
              cat(model[["HB_names_random_params"]][model[["constraints"]][[i]][1]], 
                  cond[model[["constraints"]][[i]][2]], model[["HB_names_random_params"]][model[["constraints"]][[i]][3]], 
                  "\n")
            }
          }
        }
        if (!is.null(model[["pv"]])) {
          cat("\nPrior Variance-Covariance Matrix:")
          cat("\n---------------------------------\n")
          print(model[["pv"]])
        }
        ### end changes 12 April 2023
        
        
        cat("\n")
        cat("\n\napollo_probabilities")
        cat("\n----------------------\n")
        txt=capture.output(print(model$apollo_probabilities))
        cat(txt, sep="\n")
      }
      ### end 3 Feb
      
      ans[["random_mean"]]   <- model$HB_chains_normals_means
      ans[["random_cov_mean"]] <- model$HB_chains_normals_mean_of_covar
      ans[["random_cov_sd"]] <- model$HB_chains_normals_sd_of_covar
      ans[["HB_random_params_mean_sd"]]     <- model$HB_random_params_mean_sd
      ans[["posterior"]]     <- model$HB_posterior_means_summary
      ans[["HB_random_params_covar"]]     <- model$HB_random_params_covar
      ans[["HB_random_params_corr"]]     <- model$HB_random_params_corr
    }    
    return(invisible(ans))
  }
  
  
  # ####################### #
  #### CLASSICAL OUTPUT  ####
  # ####################### #
  
  ### change 7 August (next line, and then replacing 2 by multiplier in several lines belwo)
  if(printPVal==2) pMult <- 2 else pMult <- 1
  output=cbind(model$estimate,
               model$se,
               model$estimate/model$se,
               pMult*(1-stats::pnorm(abs(model$estimate/model$se))),
               (model$estimate-1)/model$se,
               pMult*(1-stats::pnorm(abs((model$estimate-1)/model$se))),
               model$robse,
               model$estimate/model$robse,
               pMult*(1-stats::pnorm(abs(model$estimate/model$robse))),
               (model$estimate-1)/model$robse,
               pMult*(1-stats::pnorm(abs((model$estimate-1)/model$robse))))
  #output <- signif(output,4)
  ### change 7
  if(pMult==2){
    colnames(output) <- c('Estimate',
                          's.e.', 't.rat.(0)', 'p(2-sided)','t.rat(1)','p(2-sided)', 
                          'Rob.s.e.','Rob.t.rat.(0)','p(2-sided)','Rob.t.rat.(1)','p(2-sided)')
  } else {
    colnames(output) <- c('Estimate',
                          's.e.', 't.rat.(0)', 'p(1-sided)','t.rat(1)','p(1-sided)', 
                          'Rob.s.e.','Rob.t.rat.(0)','p(1-sided)','Rob.t.rat.(1)','p(1-sided)')
  }
  rownames(output) <- names(model$estimate)
  # If there is a bootstrap covariance matrix
  if(!is.null(model$bootvarcov)){
    tmp <- model$bootse
    tmp <- cbind(`Bootstrap.s.e.`   = tmp,
                 `Bootstrap.t.rat.(0)` = model$estimate/tmp,
                 `p(2-sided)`       = 2*(1-stats::pnorm(abs(model$estimate/tmp))),
                 `p(1-sided)`       = 1*(1-stats::pnorm(abs(model$estimate/tmp))),
                 `Bootstrap.t.rat.(1)` = (model$estimate-1)/tmp,
                 `p(2-sided)`       = 2*(1-stats::pnorm(abs((model$estimate-1)/tmp))),
                 `p(1-sided)`       = 1*(1-stats::pnorm(abs((model$estimate-1)/tmp))) )
    if(!printPVal) tmp <- tmp[,-grep('p(', colnames(tmp), fixed=TRUE)]
    if(printPVal & pMult==1) tmp <- tmp[,-grep('p(2', colnames(tmp), fixed=TRUE)]
    if(printPVal & pMult==2) tmp <- tmp[,-grep('p(1', colnames(tmp), fixed=TRUE)]
    if(!printT1) tmp <- tmp[,-grep('t.rat.(1', colnames(tmp), fixed=TRUE)]
    output <- cbind(output, tmp)
  }
  
  dropcolumns = NULL
  if(printClassical==FALSE) dropcolumns = c(dropcolumns,2,3,4,5,6)
  if(printT1==FALSE) dropcolumns = c(dropcolumns,5,6,10,11,15,16)
  if(printPVal==FALSE) dropcolumns = c(dropcolumns,4,6,9,11,14,16)
  dropcolumns = unique(dropcolumns)
  if(length(dropcolumns)>0) output = output[,-dropcolumns, drop=FALSE]
  
  cat("LL(start)                                   : ",round(model$LLStart,2),"\n", sep="")
  if(length(model$LLout)==1) cat("LL at equal shares, LL(0)                   : ",ifelse(is.numeric(model$LL0[1]),round(model$LL0[1],2),"Not applicable"),"\n", sep="")
  if(length(model$LLout)>1 ) cat("LL (whole model) at equal shares, LL(0)     : ",ifelse(is.numeric(model$LL0[1]),round(model$LL0[1],2),"Not applicable"),"\n", sep="")
  if(length(model$LLout)==1) cat("LL at observed shares, LL(C)                : ",ifelse(is.numeric(model$LLC[1]),round(model$LLC[1],2),"Not applicable"),"\n", sep="")
  if(length(model$LLout)>1 ) cat("LL (whole model) at observed shares, LL(C)  : ",ifelse(is.numeric(model$LLC[1]),round(model$LLC[1],2),"Not applicable"),"\n", sep="")
  if(length(model$LLout)==1) cat("LL(final)                                   : ",round(model$maximum,2),"\n",sep="")
  if(length(model$LLout)>1 ) cat("LL(final, whole model)                      : ",round(model$maximum,2),"\n",sep="")
  cat("Rho-squared vs equal shares                  : ", ifelse(!is.numeric(model$rho2_0   ), "Not applicable", round(model$rho2_0   , 4)),"\n")
  cat("Adj.Rho-squared vs equal shares              : ", ifelse(!is.numeric(model$adjRho2_0), "Not applicable", round(model$adjRho2_0, 4)),"\n")
  cat("Rho-squared vs observed shares               : ", ifelse(!is.numeric(model$rho2_C   ), "Not applicable", round(model$rho2_C   , 4)),"\n")
  cat("Adj.Rho-squared vs observed shares           : ", ifelse(!is.numeric(model$adjRho2_C), "Not applicable", round(model$adjRho2_C, 4)),"\n")
  cat("AIC                                         : ",round(model$AIC, 2),"\n")
  cat("BIC                                         : ",round(model$BIC, 2),"\n")
  
  if(length(model$LLout)>1){
    cat("\n")
    for(j in 2:length(model$LLout)){
      nam <- names(model$LLout)[j]
      sp1 <- ifelse(6+nchar(nam)<33, paste0(rep(" ",33-nchar(nam)-6), collapse=""), "")
      sp2 <- ifelse(9+nchar(nam)<33, paste0(rep(" ",33-nchar(nam)-10), collapse=""), "")
      cat("LL(0,", nam, ")", sp1, ": ", ifelse(is.finite(model$LL0[j]), round(model$LL0[j],2), "Not applicable"),"\n", sep="")
      #cat("LL(final,", nam, ")", sp2, ": ", model$LLout[j], sep="")
      txt <- paste0("LL(final,", nam, ")", sp2, ": ", round(model$LLout[j],2))
      if(!is.finite(model$LLout[j])) cat(txt, " Likelihood equal to zero for at least\n", 
                                         paste0(rep(" ", nchar(txt)), collapse=""), 
                                         " one individual in this component.", sep="") else cat(txt)
      cat('\n')
    }; rm(nam, sp1, sp2)
  }
  
  cat("\n")
  cat("Estimated parameters                        : ", model$nFreeParams,"\n", sep="")
  #cat("Norm of the gradient at optimum  : ",round( sqrt(sum(model$gradient^2)),2), "\n\n")
  f <- function(t){
    tmpH <- floor(t/60^2)
    tmpM <- floor((t-tmpH*60^2)/60)
    tmpS <- round(t-tmpH*60^2-tmpM*60,2)
    paste(formatC(tmpH,width=2,format='d',flag=0),
          formatC(tmpM,width=2,format='d',flag=0),
          tmpS,sep=':')
  }
  cat("Time taken (hh:mm:ss)                       : ",f(model$timeTaken),"\n")
  cat("     pre-estimation                         : ",f(model$timePre),"\n")
  cat("     estimation                             : ",f(model$timeEst),"\n")
  if(!is.null(model$nIterPrescaling) && (model$nIterPrescaling>0 & model$nIterPostscaling>0)){
    cat("          initial estimation                : ",f(model$timeEstPrescaling), "\n")
    cat("          estimation after rescaling        : ",f(model$timeEstPostscaling), "\n")
  }
  cat("     post-estimation                        : ",f(model$timePost),"\n")
  if(!is.null(model$successfulEstimation) && !model$successfulEstimation) tmp <- paste0("(",model$message,")") else tmp <- ""
  cat("Iterations                                  : ",model$nIter, tmp, "\n")
  if(!is.null(model$nIterPrescaling) && (model$nIterPrescaling>0 & model$nIterPostscaling>0)){
    cat("     initial estimation                     : ",model$nIterPrescaling, "\n")
    cat("     estimation after rescaling             : ",model$nIterPostscaling, "\n")
  }
  if(model$bootstrapSE>0) cat("Number of bootstrap repetitions             : ", model$bootstrapSE, "\n")
  #if(!is.null(model$eigValue) && !anyNA(model$eigValue)){
  #  cat("Min abs eigenvalue of Hessian               : ",round(min(abs(model$eigValue)),6),"\n")
  #  if(any(model$eigValue>0)) apollo_print("Some eigenvalues of Hessian are positive, indicating potential problems!") 
  #}
  
  # Printing of constraints, if used
  cat('\n')
  if(is.null(model$constraints)) cat("Unconstrained optimisation.\n") else {
    cat("Constrained optimisation:\n")
    if( is.null(model$apollo_constraints)) cat(" Please refer to original model script to see the constraints.")
    if(!is.null(model$apollo_constraints)) cat(paste0(" ", model$apollo_constraints), sep="\n")
    cat("\n")
  }; rm(test)
  
  cat("\n")
  
  if(!printClassical & anyNA(model$se[!(names(model$estimate) %in% model$apollo_fixed)]) ){
    apollo_print('Classical standard errors could not be calculated for some parameters. This could point to an identification or estimation problem.', type="w")
  }
  
  if(scaling_used) apollo_print("These outputs have had the scaling used in estimation applied to them.")
  cat("Estimates:\n")
  if(nrow(output)>options("max.print")) options(max.print=nrow(output)+100)
  if(!printFixed && length(model$apollo_fixed)>0) output <- output[!(rownames(output) %in% model$apollo_fixed),]
  apollo_print(output) #print(output, digits=4)
  cat('\n')
  
  ### Print diagnostics
  # Model structure
  if(!is.null(model$componentReport)) for(r in model$componentReport){
    test <- is.list(r) && !is.null(r$param) && length(r$param)>0 && modelOutput_settings$printModelStructure
    if(test) for(j in r$param) cat(j, '\n', sep='')
    if(test) cat('\n')
  }
  if(!is.null(model$componentReport)) for(r in model$componentReport){
    test <- is.list(r) && !is.null(r$data) && length(r$data)>0 && modelOutput_settings$printDataReport
    if(test) for(j in r$data ) cat(j, '\n', sep='')
    if(test) cat('\n')
  }
  #if(exists('r')) rm(r)
  #if(exists('j')) rm(j)
  
  ### Fill shorter param names with spaces
  longNames <- names( model$estimate )
  if(length(model$apollo_fixed)>0) longNames <- longNames[-which(longNames %in% model$apollo_fixed)]
  maxLen    <- max(nchar(longNames))
  for(i in 1:length(longNames)) longNames[i] <- paste0(paste0(rep(" ", maxLen-nchar(longNames[i])), collapse=""), longNames[i])
  
  if(printCovar){
    if(printClassical==TRUE){
      cat("\n")
      cat("Classical covariance matrix:\n")
      tmp <- model$varcov
      colnames(tmp) <- longNames
      apollo_print(tmp) #print(tmp, digits=4)
    }
    cat("\n")
    cat("Robust covariance matrix:\n")
    tmp <- model$robvarcov
    colnames(tmp) <- longNames
    apollo_print(tmp) #print(tmp, digits=4)
    if(model$bootstrapSE>0){
      cat("\n")
      cat("Bootstrap covariance matrix:\n")
      tmp <- model$bootvarcov
      colnames(tmp) <- longNames
      apollo_print(tmp) #print(tmp, digits=4)
    }
  }
  
  if(printCorr){
    if(printClassical==TRUE){
      cat("\n")
      cat("Classical correlation matrix:\n")
      tmp <- model$corrmat
      colnames(tmp) <- longNames
      apollo_print(tmp) #print(tmp, digits=4)
    }
    cat("\n")
    cat("Robust correlation matrix:\n")
    tmp <- model$robcorrmat
    colnames(tmp) <- longNames
    apollo_print(tmp) #print(tmp, digits=4)
    if(model$bootstrapSE>0){
      cat("\n")
      cat("Bootstrap correlation matrix:\n")
      tmp <- model$bootcorrmat
      colnames(tmp) <- longNames
      apollo_print(tmp) #print(tmp, digits=4)
    }
  }
  
  if(printOutliers>0){
    outliers <- data.frame(ID=names(model$avgCP), avgChoiceProb=model$avgCP)
    colnames(outliers) <- c("ID","Avg prob per choice")
    if(!model$apollo_control$panelData) colnames(outliers) <- c("row", "Avg prob per choice")
    outliers <- outliers[order(outliers[,2]),]
    if(printOutliers==TRUE) printOutliers=20
    printOutliers=floor(min(printOutliers,nrow(outliers)))
    cat("\n",printOutliers,"most extreme outliers in terms of lowest average per choice prediction:\n")
    print(outliers[(1:printOutliers),], row.names=FALSE)
  }
  
  if(printChange){
    cat("\nChanges in parameter estimates from starting values:\n")
    tmp <- cbind(model$apollo_beta, model$estimate[names(model$apollo_beta)],
                 model$estimate[names(model$apollo_beta)]-model$apollo_beta)
    colnames(tmp) <- c("Initial", "Estimate", "Difference")
    apollo_print(tmp)
  }
  
  if(printFunctions){
    cat("\nSettings and functions used in model definition:\n")
    cat("\napollo_control")
    cat("\n--------------\n")
    ### change 27 July
    ##txt=t(data.frame(model$apollo_control))
    tmp=model$apollo_control
    tmp$cpp=NULL
    ##tmp$analyticGrad=NULL
    tmp$matrixMult=NULL
    tmp$subMaxV=NULL
    txt=t(data.frame(tmp))
    ### end change 27 July
    colnames(txt)="Value"
    print(txt)
    cat("\nHessian routines attempted")
    cat("\n--------------------------\n")
    cat(model$hessianMethodsAttempted)
    cat("\n")
    if(!is.null(model$scaling) && !all(model$scaling==1)){
      cat("\nScaling in estimation")
      cat("\n---------------------\n")
      txt=as.matrix(model$scaling)
      colnames(txt)="Value"
      print(txt)}
    if(!is.null(model$hessianScaling) && !all(model$hessianScaling==1)){
      cat("\nScaling used in computing Hessian")
      cat("\n---------------------------------\n")
      txt=as.matrix(model$hessianScaling)
      colnames(txt)="Value"
      print(txt)}
    if(is.function(model$apollo_randCoeff)){
      cat("\n\napollo_randCoeff")
      cat("\n------------------\n")
      txt=capture.output(print(model$apollo_randCoeff))
      #cat(txt[1:(length(txt)-1)],sep="\n")}
      cat(txt, sep="\n")}
    if(is.function(model$apollo_lcPars)){
      cat("\n\napollo_lcPars")
      cat("\n---------------\n")
      txt=capture.output(print(model$apollo_lcPars))
      #cat(txt[1:(length(txt)-1)],sep="\n")}
      cat(txt, sep="\n")}
    cat("\n\napollo_probabilities")
    cat("\n----------------------\n")
    txt=capture.output(print(model$apollo_probabilities))
    #cat(txt[1:(length(txt)-1)],sep="\n")
    cat(txt, sep="\n")
  }
  
  invisible(output)
}

Try the apollo package in your browser

Any scripts or data that you put into this service are public.

apollo documentation built on Oct. 2, 2024, 1:08 a.m.