Nothing
###########################################################################/**
# @set "class=AffymetrixCelSet"
# @RdocMethod getAverageFile
#
# @title "Calculates the mean and the standard deviation of the cell signal (intensity, standard deviation etc.) across the CEL set"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{name}{The label of the calculated parameters.
# If @NULL, a default name format \code{<prefix>-<mean>-<sd>} is used.}
# \item{indices}{An @integer @vector specifying which cells to consider.
# If \code{"remaining"}, only parameters for cells that have not been
# are calculated.
# If @NULL, all cells are used.}
# \item{mean}{A @character of a @function specifying the function used
# to calculate the average.}
# \item{sd}{A @character of a @function specifying the function used
# to calculate the standard deviation.}
# \item{na.rm}{If @TRUE, @NAs are excluded before, otherwise not.}
# \item{...}{Not used.}
# \item{cellsPerChunk}{A @integer specifying the total number of cells
# (across arrays) read into memory per chunk.}
# \item{moreCells}{A @double scalar indicating if more or less cells
# should be used per chunk.}
# \item{force}{If @TRUE, parameters for cells already calculated are
# recalculated, otherwise not.}
# \item{verbose}{If @TRUE, progress details are printed, otherwise not.
# May also be a @see "R.utils::Verbose" object.}
# }
#
# \value{
# Returns an @see "AffymetrixCelSet" of the same class as the CEL set
# averaged.
# }
#
# \details{
# The parameter estimates are stored as a CEL file of the same class as
# the data files in the set. The CEL file is named \code{<name>.cel}
# and placed in the directory of the set.
# Currently there is no specific data class for this file, but the average
# cell signals are stored as "intensities", the standard deviation of the
# cell signals as "stddevs", and the number of data points used for each
# estimate is stored as "pixels".
# }
#
# @author "HB, KS"
#
# \seealso{
# @seeclass
# }
#*/###########################################################################
setMethodS3("getAverageFile", "AffymetrixCelSet", function(this, name=NULL, prefix="average", indices="remaining", field=c("intensities", "stdvs"), mean=c("median", "mean"), sd=c("mad", "sd"), na.rm=TRUE, g=NULL, h=NULL, ..., cellsPerChunk=moreCells*10^7/length(this), moreCells=1, force=FALSE, verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'field':
field <- match.arg(field)
# Argument 'mean':
if (is.character(mean)) {
mean <- match.arg(mean)
meanName <- mean
if (mean == "mean") {
mean <- base::rowMeans
} else if (mean == "median") {
mean <- rowMedians
}
} else if (is.function(mean)) {
meanName <- "customMean"
} else {
throw("Argument 'mean' must be either a character or a function: ", mode(mean))
}
# Argument 'sd':
if (is.character(sd)) {
sd <- match.arg(sd)
sdName <- sd
if (sd == "sd") {
sd <- rowSds
} else if (sd == "mad") {
sd <- rowMads
}
} else if (is.function(sd)) {
sdName <- "customSd"
} else {
throw("Argument 'sd' must be either a character or a function: ",
mode(sd))
}
# Argument 'name':
if (is.null(name)) {
key <- list(method="getAverageFile", class=class(this)[1],
arrays=sort(getNames(this)), mean=meanName, sd=sdName)
# assign mean and sd to an empty environment so that digest() doesn't
# pick up any "promised" objects from the original environment.
# A bit ad hoc, but it works for now. /2007-01-03
key <- lapply(key, FUN=function(x) {
if (is.function(x))
environment(x) <- emptyenv()
x
})
id <- getChecksum(key)
name <- sprintf("%s-%s-%s-%s,%s", prefix, field, meanName, sdName, id)
}
# Argument 'indices':
df <- as.list(this)[[1]]
nbrOfCells <- getHeader(df)$total
if (force) {
if (identical(indices, "remaining")) {
indices <- NULL
}
}
if (is.null(indices)) {
indices <- 1:nbrOfCells
} else if (identical(indices, "remaining")) {
} else {
indices <- Arguments$getIndices(indices, max=nbrOfCells)
}
# Argument 'cellsPerChunk':
cellsPerChunk <- Arguments$getInteger(cellsPerChunk, range=c(1,Inf))
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Retrieving average cell signals across ", length(this), " arrays")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Create CEL file to store the average array
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Create a private filename (with a dot prefix) to make sure it is not
# identified as a regular CEL file when the directory is scanned for files.
filename <- sprintf(".%s.CEL", name)
if (is.null(this$.averageFiles))
this$.averageFiles <- list()
res <- this$.averageFiles[[filename]]
# Has file been deleted since last time?
if (!is.null(res) && !isFile(res)) {
warning("Will recalculate average file, because it seems to have been deleted since last time: ", getPathname(res))
res <- NULL
}
if (is.null(res)) {
verbose && enter(verbose, "Obtaining an (existing or new) result file")
# Searching for the output file in multiple directories
path <- getPath(this)
paths <- c(path)
# Drop tags from root path?
if (getOption(aromaSettings, "devel/dropRootPathTags", TRUE)) {
path <- dropRootPathTags(path, depth=2, verbose=less(verbose, 5))
paths <- c(paths, path)
paths <- unique(paths)
}
verbose && cat(verbose, "Paths:")
verbose && print(verbose, paths)
verbose && cat(verbose, "Filename: ", filename)
pathname <- NULL
for (kk in seq_along(paths)) {
path <- paths[kk]
verbose && enter(verbose, sprintf("Searching path #%d of %d", kk, length(paths)))
verbose && cat(verbose, "Path: ", path)
pathnameT <- Arguments$getReadablePathname(filename, path=path, mustExist=FALSE)
verbose && cat(verbose, "Pathname: ", pathnameT)
if (isFile(pathnameT)) {
pathname <- pathnameT
verbose && cat(verbose, "Found an existing file.")
verbose && exit(verbose)
break
}
verbose && exit(verbose)
} # for (kk ...)
verbose && cat(verbose, "Located pathname: ", pathname)
if (isFile(pathname)) {
verbose && enter(verbose, "Loading existing data file")
verbose && cat(verbose, "Pathname: ", pathname)
res <- newInstance(df, pathname)
verbose && exit(verbose)
} else {
verbose && enter(verbose, "Creating CEL file to store average signals")
path <- paths[length(paths)]
verbose && cat(verbose, "Path: ", path)
verbose && cat(verbose, "Filename: ", filename)
pathname <- Arguments$getReadablePathname(filename, path=path, mustExist=FALSE)
verbose && cat(verbose, "Pathname: ", pathname)
res <- createFrom(df, filename=pathname, path=NULL, methods="create", clear=TRUE, verbose=less(verbose))
verbose && exit(verbose)
} # if (isFile(pathname))
verbose && exit(verbose)
this$.averageFiles[[filename]] <- res
} # if (is.null(res))
verbose && print(verbose, res)
pathname <- getPathname(res)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Identify which indices to use
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (identical(indices, "remaining")) {
pixels <- .readCel(pathname, readIntensities=FALSE, readStdvs=FALSE,
readPixels=TRUE)$pixels
indices <- which(pixels == 0)
# Not needed anymore
pixels <- NULL; # Not needed anymore.
}
nbrOfIndices <- length(indices)
# Nothing more to do?
if (nbrOfIndices == 0)
return(res)
verbose && cat(verbose, "Number of cells to be updated: ", nbrOfIndices)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Estimate the mean and standard deviation
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Since we might want to do this robustly, but also because we want to
# estimate the standard deviation, for each cell we need all data across
# arrays at once. In order to this efficiently, we do this in chunks
idxs <- 1:nbrOfIndices
head <- 1:cellsPerChunk
nbrOfChunks <- ceiling(nbrOfIndices / cellsPerChunk)
verbose && cat(verbose, "Number cells per chunk: ", cellsPerChunk)
# Get the pathnames of all CEL files to average
pathnames <- lapply(this, FUN=getPathname)
pathnames <- unlist(pathnames, use.names=FALSE)
nbrOfArrays <- length(pathnames)
if (!na.rm)
n <- rep(nbrOfArrays, times=cellsPerChunk)
count <- 1
while (length(idxs) > 0) {
verbose && enter(verbose, "Fitting chunk #", count, " of ", nbrOfChunks)
if (length(idxs) < cellsPerChunk) {
head <- 1:length(idxs)
if (!na.rm)
n <- rep(nbrOfArrays, times=length(idxs))
}
# The indices to be used in this chunk
ii <- idxs[head]
verbose && cat(verbose, "Chunk size: ", length(ii))
verbose && enter(verbose, "Reading data")
# X <- readCelIntensities(pathnames, indices=indices[ii])
readIntensities <- (field == "intensities")
readStdvs <- (field == "stdvs")
# TODO: Ideally, affxparser::readCel() should support
# multiple filenames turning every data fields into a
# matrix. /HB 2007-01-07
X <- matrix(NA_real_, nrow=length(ii), ncol=nbrOfArrays)
for (kk in seq_len(nbrOfArrays)) {
X[,kk] <- .readCel(filename = pathnames[kk],
indices = indices[ii],
readIntensities = readIntensities,
readHeader = FALSE,
readStdvs = readStdvs,
readPixels = FALSE,
readXY = FALSE,
readOutliers = FALSE,
readMasked = FALSE,
...,
verbose = (verbose - 1))[[field]]
}
verbose && exit(verbose)
if (!is.null(g)) {
verbose && enter(verbose, "Transforming data using y = g(x)")
X <- g(X)
verbose && exit(verbose)
}
verbose && enter(verbose, "Estimating averages and standard deviations")
if (na.rm)
n <- base::apply(X, MARGIN=1, FUN=function(x) { sum(!is.na(x)) })
# Calculate the mean signal
mu <- mean(X, na.rm=na.rm); # Special mean()!
# Calculate the standard deviation of the signals
sigma <- sd(X, mean=mu, na.rm=na.rm); # Special sd()!
verbose && exit(verbose)
if (!is.null(h)) {
verbose && enter(verbose, "Back-transforming estimates using x = h(y)")
mu <- h(mu)
sigma <- h(sigma)
verbose && exit(verbose)
}
# Write estimates to result file
verbose && enter(verbose, "Writing estimates")
.updateCel(pathname, indices=indices[ii], intensities=mu, stdvs=sigma, pixels=n)
verbose && exit(verbose)
# Not needed anymore
mu <- sigma <- NULL
# Next chunk...
idxs <- idxs[-head]
count <- count + 1
# Garbage collection
gc()
verbose && exit(verbose)
} # while()
verbose && exit(verbose)
res
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.