Nothing
###########################################################################/**
# @RdocClass UnitTypeScaleNormalization
#
# @title "The UnitTypeScaleNormalization class"
#
# \description{
# @classhierarchy
#
# This class represents a normalization function that transforms the
# probe signals such that each unit type gets the same average.
# }
#
# @synopsis
#
# \arguments{
# \item{...}{Arguments passed to the constructor of
# @see "ProbeLevelTransform3".}
# \item{targetAvg}{A @numeric value.}
# }
#
# \section{Fields and Methods}{
# @allmethods "public"
# }
#
# @author "HB"
#*/###########################################################################
setConstructorS3("UnitTypeScaleNormalization", function(..., targetAvg=4400) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
targetAvg <- Arguments$getDouble(targetAvg, range=c(1,Inf))
extend(ProbeLevelTransform3(...), "UnitTypeScaleNormalization",
.targetAvg = targetAvg
)
})
setMethodS3("getParameters", "UnitTypeScaleNormalization", function(this, ...) {
# Get parameters from super class
params <- NextMethod("getParameters")
# Get parameters of this class
params2 <- list(
targetAvg = this$.targetAvg
)
# Append the two sets
params <- c(params, params2)
params
}, protected=TRUE)
setMethodS3("fitOne", "UnitTypeScaleNormalization", function(this, df, ..., verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'df':
df <- Arguments$getInstanceOf(df, "AffymetrixCelFile")
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Fitting normalization function for one array")
verbose && cat(verbose, "Full name: ", getFullName(df))
verbose && enter(verbose, "Getting algorithm parameters")
params <- getParameters(this, expand=TRUE)
units <- params$unitsToFit
verbose && cat(verbose, "Units:")
verbose && str(verbose, units)
shift <- params$shift
stratifyBy <- params$typesToFit
verbose && exit(verbose)
verbose && enter(verbose, "Getting unit types")
cdf <- getCdf(df)
unitTypes <- getUnitTypes(cdf, units=units, verbose=verbose)
uniqueUnitTypes <- sort(unique(unitTypes))
knownUnitTypes <- attr(unitTypes, "types")
verbose && exit(verbose)
fit <- list()
for (kk in seq_along(uniqueUnitTypes)) {
unitType <- uniqueUnitTypes[kk]
key <- names(knownUnitTypes)[unitType == knownUnitTypes]
names(unitType) <- key
verbose && enter(verbose, sprintf("Unit type %d (%d; '%s') of %d",
kk, unitType, key, length(uniqueUnitTypes)))
unitsKK <- units[unitTypes == unitType]
verbose && cat(verbose, "Units:")
verbose && str(verbose, unitsKK)
nbrOfUnits <- length(unitsKK)
verbose && enter(verbose, "Identifying cell indices")
cells <- getCellsToInternal(this, units=unitsKK, stratifyBy=stratifyBy, verbose=verbose)
verbose && cat(verbose, "Cells:")
verbose && str(verbose, cells)
verbose && exit(verbose)
nbrOfCells <- length(cells)
verbose && enter(verbose, "Reading signals")
y <- getData(df, indices=cells, fields="intensities", drop=TRUE, verbose=verbose)
verbose && str(verbose, y)
verbose && exit(verbose)
# Not needed anymore
cells <- NULL
# Shift?
if (shift != 0) {
verbose && enter(verbose, "Shifting signals")
y <- y + shift
verbose && exit(verbose)
}
verbose && enter(verbose, "Estimating parameters")
mu <- median(y, na.rm=TRUE)
# Not needed anymore
y <- NULL
verbose && exit(verbose)
fitKK <- list(mu=mu, unitType=unitType, nbrOfUnits=nbrOfUnits, nbrOfCells=nbrOfCells)
verbose && str(verbose, fitKK)
fit[[key]] <- fitKK
# Not needed anymore
fitKK <- NULL
verbose && exit(verbose)
} # for (kk ...)
verbose && cat(verbose, "Fitted parameters:")
verbose && str(verbose, fit)
verbose && exit(verbose)
fit
}, protected=TRUE)
setMethodS3("getNormalizeSignalsOne", "UnitTypeScaleNormalization", function(this, df, fit, ..., verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'df':
df <- Arguments$getInstanceOf(df, "AffymetrixCelFile")
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Normalizing one array according to model fit")
verbose && cat(verbose, "Full name: ", getFullName(df))
verbose && enter(verbose, "Getting algorithm parameters")
params <- getParameters(this, expand=TRUE)
units <- params$unitsToUpdate
verbose && cat(verbose, "Units:")
verbose && str(verbose, units)
shift <- params$shift
stratifyBy <- params$typesToFit
targetAvg <- params$targetAvg
verbose && exit(verbose)
# Private/temporary/test code /HB 2008-07-28
if (isTRUE(this$.foo)) {
verbose && enter(verbose, "Getting target average for this array")
unitTypes <- sapply(fit, FUN=function(x) x$unitType)
mus <- sapply(fit, FUN=function(x) x$mu)
keep <- (unitTypes %in% c(2,5))
mus <- mus[keep]
targetAvg <- mean(mus)
verbose && cat(verbose, "targetAvg: ", targetAvg)
verbose && exit(verbose)
}
verbose && enter(verbose, "Getting unit types")
cdf <- getCdf(df)
unitTypes <- getUnitTypes(cdf, units=units, verbose=verbose)
uniqueUnitTypes <- sort(unique(unitTypes))
knownUnitTypes <- attr(unitTypes, "types")
verbose && exit(verbose)
data <- data.frame(cell=NULL, y=NULL)
for (kk in seq_along(uniqueUnitTypes)) {
unitType <- uniqueUnitTypes[kk]
key <- names(knownUnitTypes)[unitType == knownUnitTypes]
names(unitType) <- key
verbose && enter(verbose, sprintf("Unit type %d (%d; '%s') of %d",
kk, unitType, key, length(uniqueUnitTypes)))
unitsKK <- units[unitTypes == unitType]
verbose && cat(verbose, "Units:")
verbose && str(verbose, unitsKK)
verbose && exit(verbose)
verbose && enter(verbose, "Identifying cell indices")
cells <- getCellsToInternal(this, units=unitsKK, stratifyBy=stratifyBy, verbose=verbose)
verbose && cat(verbose, "Cells:")
verbose && str(verbose, cells)
verbose && exit(verbose)
verbose && enter(verbose, "Reading signals")
y <- getData(df, indices=cells, fields="intensities", drop=TRUE, verbose=verbose)
verbose && str(verbose, y)
verbose && exit(verbose)
# Shift?
if (shift != 0) {
verbose && enter(verbose, "Shifting signals")
y <- y + shift
verbose && exit(verbose)
}
verbose && enter(verbose, "Rescaling")
mu <- fit[[key]]$mu
b <- targetAvg / mu
verbose && printf(verbose, "Scale factor: %.2f\n", b)
y <- b*y
verbose && cat(verbose, "Normalized signals:")
verbose && str(verbose, y)
# Sanity check
yM <- median(y, na.rm=TRUE)
verbose && printf(verbose, "Median after: %.2f\n", yM)
verbose && exit(verbose)
dataKK <- data.frame(cell=cells, y=y)
# Not needed anymore
cells <- y <- mu <- b <- yM <- NULL
data <- rbind(data, dataKK)
# Not needed anymore
dataKK <- NULL
verbose && exit(verbose)
} # for (kk ...)
verbose && cat(verbose, "Normalized data:")
verbose && str(verbose, data)
verbose && exit(verbose)
data
}, protected=TRUE)
###########################################################################/**
# @RdocMethod process
#
# @title "Normalizes the data set"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{...}{Not used.}
# \item{force}{If @TRUE, data already normalized is re-normalized,
# otherwise not.}
# \item{verbose}{See @see "R.utils::Verbose".}
# }
#
# \value{
# Returns a @double @vector.
# }
#
# \seealso{
# @seeclass
# }
#*/###########################################################################
setMethodS3("process", "UnitTypeScaleNormalization", function(this, ..., skip=FALSE, force=FALSE, verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Scale normalizing data set")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Already done?
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (!force && isDone(this)) {
verbose && cat(verbose, "Already normalized")
verbose && exit(verbose)
outputDataSet <- getOutputDataSet(this)
return(invisible(outputDataSet))
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Setup
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Get input data set
dataSet <- getInputDataSet(this)
# Get algorithm parameters
verbose && enter(verbose, "Getting algorithm parameters")
params <- getParameters(this, expand=TRUE)
verbose && str(verbose, params)
verbose && exit(verbose)
# Get the output path
outputPath <- getPath(this)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Normalize each array
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Normalizing ", length(dataSet), " arrays")
for (kk in seq_along(dataSet)) {
verbose && enter(verbose, "Array #", kk)
df <- dataSet[[kk]]
verbose && print(verbose, df)
filename <- basename(getPathname(df))
filename <- gsub("[.]cel$", ".CEL", filename); # Only output upper case!
pathname <- Arguments$getWritablePathname(filename, path=outputPath)
pathname <- AffymetrixFile$renameToUpperCaseExt(pathname)
# Already normalized?
if (skip && isFile(pathname)) {
verbose && cat(verbose, "Normalized data file already exists: ",
pathname)
verbose && exit(verbose)
next
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Fit model
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Fitting model")
fit <- fitOne(this, df=df, verbose=less(verbose))
verbose && str(verbose, fit)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Normalize data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Normalizing for fitted effects")
data <- getNormalizeSignalsOne(this, df=df, fit=fit,
verbose=less(verbose))
verbose && str(verbose, data)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Store normalized data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Writing normalized data")
writeSignals(this, pathname=pathname, cells=data$cell,
intensities=data$y, templateFile=df, verbose=less(verbose))
# Not needed anymore
data <- NULL
## Create checksum file
dfZ <- getChecksumFile(pathname)
verbose && exit(verbose)
# Garbage collect
gc <- gc()
verbose && print(verbose, gc)
verbose && exit(verbose)
} # for (kk ...)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Create result set
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
outputDataSet <- getOutputDataSet(this, force=TRUE, verbose=less(verbose))
# Update the output data set
this$outputDataSet <- outputDataSet
verbose && exit(verbose)
outputDataSet
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.