| batchMap | R Documentation |
A parallel and asynchronous Map/mapply for batch systems.
Note that this function only defines the computational jobs.
The actual computation is started with submitJobs.
Results and partial results can be collected with reduceResultsList, reduceResults or
loadResult.
For a synchronous Map-like execution, see btmapply.
batchMap(
fun,
...,
args = list(),
more.args = list(),
reg = getDefaultRegistry()
)
fun |
[ |
... |
[ANY] |
args |
[ |
more.args |
[ |
reg |
[ |
[data.table] with ids of added jobs stored in column “job.id”.
batchReduce
# example using "..." and more.args
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
f = function(x, y) x^2 + y
ids = batchMap(f, x = 1:10, more.args = list(y = 100), reg = tmp)
getJobPars(reg = tmp)
testJob(6, reg = tmp) # 100 + 6^2 = 136
# vector recycling
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
f = function(...) list(...)
ids = batchMap(f, x = 1:3, y = 1:6, reg = tmp)
getJobPars(reg = tmp)
# example for an expand.grid()-like operation on parameters
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
ids = batchMap(paste, args = data.table::CJ(x = letters[1:3], y = 1:3), reg = tmp)
getJobPars(reg = tmp)
testJob(6, reg = tmp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.