Nothing
#' Equal-Tailed Interval (ETI)
#'
#' Compute the **Equal-Tailed Interval (ETI)** of posterior distributions using
#' the quantiles method. The probability of being below this interval is equal
#' to the probability of being above it. The ETI can be used in the context of
#' uncertainty characterisation of posterior distributions as
#' **Credible Interval (CI)**.
#'
#' @inheritParams hdi
#' @inherit ci return
#' @inherit hdi details
#' @inherit hdi seealso
#' @family ci
#'
#' @examplesIf require("rstanarm") && require("emmeans") && require("brms") && require("BayesFactor")
#' library(bayestestR)
#'
#' posterior <- rnorm(1000)
#' eti(posterior)
#' eti(posterior, ci = c(0.80, 0.89, 0.95))
#'
#' df <- data.frame(replicate(4, rnorm(100)))
#' eti(df)
#' eti(df, ci = c(0.80, 0.89, 0.95))
#' \donttest{
#' model <- suppressWarnings(
#' rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
#' )
#' eti(model)
#' eti(model, ci = c(0.80, 0.89, 0.95))
#'
#' eti(emmeans::emtrends(model, ~1, "wt", data = mtcars))
#'
#' model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
#' eti(model)
#' eti(model, ci = c(0.80, 0.89, 0.95))
#'
#' bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
#' eti(bf)
#' eti(bf, ci = c(0.80, 0.89, 0.95))
#' }
#'
#' @export
eti <- function(x, ...) {
UseMethod("eti")
}
#' @export
eti.default <- function(x, ...) {
insight::format_error(paste0("'eti()' is not yet implemented for objects of class '", class(x)[1], "'."))
}
#' @rdname eti
#' @export
eti.numeric <- function(x, ci = 0.95, verbose = TRUE, ...) {
out <- do.call(rbind, lapply(ci, function(i) {
.eti(x = x, ci = i, verbose = verbose)
}))
class(out) <- unique(c("bayestestR_eti", "see_eti", "bayestestR_ci", "see_ci", class(out)))
attr(out, "data") <- x
out
}
#' @export
#' @rdname eti
#' @inheritParams p_direction
eti.data.frame <- function(x, ci = 0.95, rvar_col = NULL, verbose = TRUE, ...) {
obj_name <- insight::safe_deparse_symbol(substitute(x))
x_rvar <- .possibly_extract_rvar_col(x, rvar_col)
if (length(x_rvar) > 0L) {
cl <- match.call()
cl[[1]] <- bayestestR::eti
cl$x <- x_rvar
cl$rvar_col <- NULL
out <- eval.parent(cl)
attr(out, "object_name") <- sprintf('%s[["%s"]]', obj_name, rvar_col)
return(.append_datagrid(out, x, long = length(ci) > 1L))
}
dat <- .compute_interval_dataframe(x = x, ci = ci, verbose = verbose, fun = "eti")
attr(dat, "object_name") <- obj_name
dat
}
#' @export
eti.draws <- function(x, ci = 0.95, verbose = TRUE, ...) {
dat <- .compute_interval_dataframe(x = .posterior_draws_to_df(x), ci = ci, verbose = verbose, fun = "eti")
attr(dat, "object_name") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.rvar <- eti.draws
#' @export
eti.MCMCglmm <- function(x, ci = 0.95, verbose = TRUE, ...) {
nF <- x$Fixed$nfl
d <- as.data.frame(x$Sol[, 1:nF, drop = FALSE])
dat <- .compute_interval_dataframe(x = d, ci = ci, verbose = verbose, fun = "eti")
attr(dat, "data") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.mcmc <- function(x, ci = 0.95, verbose = TRUE, ...) {
d <- as.data.frame(x)
dat <- .compute_interval_dataframe(x = d, ci = ci, verbose = verbose, fun = "eti")
attr(dat, "data") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.bamlss <- function(x, ci = 0.95, component = c("all", "conditional", "location"), verbose = TRUE, ...) {
component <- match.arg(component)
d <- insight::get_parameters(x, component = component)
dat <- .compute_interval_dataframe(x = d, ci = ci, verbose = verbose, fun = "eti")
attr(dat, "data") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.bcplm <- function(x, ci = 0.95, verbose = TRUE, ...) {
d <- insight::get_parameters(x)
dat <- .compute_interval_dataframe(x = d, ci = ci, verbose = verbose, fun = "eti")
attr(dat, "data") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.bayesQR <- eti.bcplm
#' @export
eti.blrm <- eti.bcplm
#' @export
eti.mcmc.list <- eti.bcplm
#' @export
eti.BGGM <- eti.bcplm
#' @export
eti.sim.merMod <- function(x,
ci = 0.95,
effects = c("fixed", "random", "all"),
parameters = NULL,
verbose = TRUE,
...) {
effects <- match.arg(effects)
dat <- .compute_interval_simMerMod(
x = x,
ci = ci,
effects = effects,
parameters = parameters,
verbose = verbose,
fun = "eti"
)
out <- dat$result
attr(out, "data") <- dat$data
out
}
#' @export
eti.sim <- function(x, ci = 0.95, parameters = NULL, verbose = TRUE, ...) {
dat <- .compute_interval_sim(x = x, ci = ci, parameters = parameters, verbose = verbose, fun = "eti")
out <- dat$result
attr(out, "data") <- dat$data
out
}
#' @export
eti.emmGrid <- function(x, ci = 0.95, verbose = TRUE, ...) {
xdf <- insight::get_parameters(x)
dat <- eti(xdf, ci = ci, verbose = verbose, ...)
dat <- .append_datagrid(dat, x, long = length(ci) > 1L)
attr(dat, "object_name") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.emm_list <- eti.emmGrid
#' @export
eti.slopes <- function(x, ci = 0.95, verbose = TRUE, ...) {
xrvar <- .get_marginaleffects_draws(x)
dat <- eti(xrvar, ci = ci, verbose = verbose, ...)
dat <- .append_datagrid(dat, x, long = length(ci) > 1L)
attr(dat, "object_name") <- insight::safe_deparse_symbol(substitute(x))
dat
}
#' @export
eti.comparisons <- eti.slopes
#' @export
eti.predictions <- eti.slopes
#' @rdname eti
#' @export
eti.stanreg <- function(x, ci = 0.95, effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"),
parameters = NULL, verbose = TRUE, ...) {
effects <- match.arg(effects)
component <- match.arg(component)
out <- .prepare_output(
eti(
insight::get_parameters(x, effects = effects, component = component, parameters = parameters),
ci = ci,
verbose = verbose,
...
),
insight::clean_parameters(x),
inherits(x, "stanmvreg")
)
class(out) <- unique(c("bayestestR_eti", "see_eti", class(out)))
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
out
}
#' @export
eti.stanfit <- eti.stanreg
#' @export
eti.blavaan <- eti.stanreg
#' @rdname eti
#' @export
eti.brmsfit <- function(x, ci = 0.95, effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL, verbose = TRUE, ...) {
effects <- match.arg(effects)
component <- match.arg(component)
out <- .prepare_output(
eti(
insight::get_parameters(x, effects = effects, component = component, parameters = parameters),
ci = ci,
verbose = verbose,
...
),
insight::clean_parameters(x)
)
class(out) <- unique(c("bayestestR_eti", "see_eti", class(out)))
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
out
}
#' @export
eti.BFBayesFactor <- function(x, ci = 0.95, verbose = TRUE, ...) {
out <- eti(insight::get_parameters(x), ci = ci, verbose = verbose, ...)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
out
}
#' @rdname eti
#' @export
eti.get_predicted <- function(x, ci = 0.95, use_iterations = FALSE, verbose = TRUE, ...) {
if (isTRUE(use_iterations)) {
if ("iterations" %in% names(attributes(x))) {
out <- eti(as.data.frame(t(attributes(x)$iterations)), ci = ci, verbose = verbose, ...)
} else {
insight::format_error("No iterations present in the output.")
}
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
} else {
out <- eti(as.numeric(x), ci = ci, verbose = verbose, ...)
}
out
}
# Helper ------------------------------------------------------------------
.eti <- function(x, ci, verbose = TRUE) {
check_ci <- .check_ci_argument(x, ci, verbose)
if (!is.null(check_ci)) {
return(check_ci)
}
results <- as.vector(stats::quantile(
x,
probs = c((1 - ci) / 2, (1 + ci) / 2),
names = FALSE,
na.rm = TRUE
))
data.frame(
CI = ci,
CI_low = results[1],
CI_high = results[2]
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.