Description Usage Arguments Value See Also
View source: R/Bayesian_Bricks.r
Contrary to posterior(), posteriorDiscard() a generic function that will update the prior distribution of a "BayesianBrick" object by removing the information provided by the observation's sufficient statistics. i.e. for the model structure:
theta|gamma \sim H(gamma)
x|theta \sim F(theta)
update gamma to gamma_posterior by removing the information of x from gamma.
For a given sample set x or it's sufficient statistics ss, and a Bayesian bricks object obj, posteriorDiscard()
will update the posterior parameters in obj for different model structures:
x \sim Gaussian(A z + b, Sigma)
z \sim Gaussian(m,S)
posteriorDiscard()
will update m and S in obj.
See ?posteriorDiscard.LinearGaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
mu \sim Gaussian(m,S)
Sigma is known.
posteriorDiscard()
will update m and S in obj.
See ?posteriorDiscard.GaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu is known.
posteriorDiscard()
will update v and S in obj.
See ?posteriorDiscard.GaussianInvWishart
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu \sim Gaussian(m,Sigma/k)
posteriorDiscard()
will update m, k, v and S in obj.
See ?posteriorDiscard.GaussianNIW
for details.
Where
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
posteriorDiscard()
will update m, V, a and b in obj.
See ?posteriorDiscard.GaussianNIG
for details.
Where
x \sim Categorical(pi)
pi \sim Dirichlet(alpha)
posteriorDiscard()
will update alpha in obj.
See ?posteriorDiscard.CatDirichlet
for details.
Where
x \sim Categorical(pi)
pi \sim DirichletProcess(alpha)
posteriorDiscard()
will update alpha in obj.
See ?posteriorDiscard.CatDP
for details.
Where
pi|alpha \sim DP(alpha,U)
z|pi \sim Categorical(pi)
theta_z|psi \sim H0(psi)
x|theta_z,z \sim F(theta_z)
posteriorDiscard()
will update alpha and psi in obj.
See ?posteriorDiscard.DP
for details.
Where
G|gamma \sim DP(gamma,U)
pi_j|G,alpha \sim DP(alpha,G), j = 1:J
z|pi_j \sim Categorical(pi_j)
k|z,G \sim Categorical(G),\textrm{ if z is a sample from the base measure } G
theta_k|psi \sim H0(psi)
posteriorDiscard()
will update gamma, alpha and psi in obj.
See ?posteriorDiscard.HDP
for details.
Where
G |eta \sim DP(eta,U)
G_m|gamma,G \sim DP(gamma,G), m = 1:M
pi_{mj}|G_m,alpha \sim DP(alpha,G_m), j = 1:J_m
z|pi_{mj} \sim Categorical(pi_{mj})
k|z,G_m \sim Categorical(G_m),\textrm{ if z is a sample from the base measure } G_m
u|k,G \sim Categorical(G),\textrm{ if k is a sample from the base measure } G
theta_u|psi \sim H0(psi)
x|theta_u,u \sim F(theta_u)
posteriorDiscard()
will update eta, gamma, alpha and psi in obj.
See ?posteriorDiscard.HDP2
for details.
1 | posteriorDiscard(obj, ...)
|
obj |
A "BayesianBrick" object used to select a method. |
... |
further arguments passed to or from other methods. |
None, or an error message if the update fails.
posteriorDiscard.LinearGaussianGaussian
for Linear Gaussian and Gaussian conjugate structure, posteriorDiscard.GaussianGaussian
for Gaussian-Gaussian conjugate structure, posteriorDiscard.GaussianInvWishart
for Gaussian-Inverse-Wishart conjugate structure, posteriorDiscard.GaussianNIW
for Gaussian-NIW conjugate structure, posteriorDiscard.GaussianNIG
for Gaussian-NIG conjugate structure, posteriorDiscard.CatDirichlet
for Categorical-Dirichlet conjugate structure, posteriorDiscard.CatDP
for Categorical-DP conjugate structure ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.