Description Usage Arguments Value See Also
View source: R/Bayesian_Bricks.r
This is a generic function that will generate random samples from the posterior predictive distribution. i.e. for the model structure:
theta|gamma \sim H(gamma)
x|theta \sim F(theta)
generate x_new from the posterior predictive distribution of x|gamma.
For a given Bayesian bricks object obj, rPosteriorPredictive()
will generate random samples from different model structures:
Where
x \sim Gaussian(A z + b, Sigma)
z \sim Gaussian(m,S)
rPosteriorPredictive()
will generate samples from the distribution of x|m,S,A,b,Sigma
See ?rPosteriorPredictive.LinearGaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
mu \sim Gaussian(m,S)
Sigma is known.
rPosteriorPredictive()
will generate samples from the distribution of x|m,S,Sigma
See ?rPosteriorPredictive.GaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu is known.
rPosteriorPredictive()
will generate samples from the distribution of x|mu,v,S
See ?rPosteriorPredictive.GaussianInvWishart
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu \sim Gaussian(m,Sigma/k)
rPosteriorPredictive()
will generate samples from the distribution of x|m,k,v,S
See ?rPosteriorPredictive.GaussianNIW
for details.
Where
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
X is a row vector, or a design matrix where each row is an obervation.
rPosteriorPredictive()
will generate samples from the distribution of x,X|m,V,a,b
See ?rPosteriorPredictive.GaussianNIG
for details.
Where
x \sim Categorical(pi)
pi \sim Dirichlet(alpha)
rPosteriorPredictive()
will generate samples from the distribution of x|alpha
See ?rPosteriorPredictive.CatDirichlet
for details.
Where
x \sim Categorical(pi)
pi \sim DirichletProcess(alpha)
rPosteriorPredictive()
will generate samples from the distribution of x|alpha
See ?rPosteriorPredictive.CatDP
for details.
1 | rPosteriorPredictive(obj, n, ...)
|
obj |
A "BayesianBrick" object used to select a method. |
n |
integer, specify the number of samples to be generated. |
... |
further arguments passed to or from other methods. |
a matrix or vector or list of random samples, depends on the type of 'obj'.
rPosteriorPredictive.GaussianNIW
for Gaussian-NIW conjugate structure, rPosteriorPredictive.GaussianNIG
for Gaussian-NIG conjugate structure, rPosteriorPredictive.CatDirichlet
for Categorical-Dirichlet conjugate structure, rPosteriorPredictive.CatDP
for Categorical-DP conjugate structure ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.