Nothing
#' Generalized power-law model with a constant variance
#'
#' gplm0 is used to fit a discharge rating curve for paired measurements of stage and discharge using a generalized power-law model with a constant variance as described in Hrafnkelsson et al. (2022). See "Details" for a more elaborate description of the model.
#' @param formula an object of class "formula", with discharge column name as response and stage column name as a covariate, i.e. of the form \code{y}~\code{x} where \code{y} is discharge in m\eqn{^3/}s and \code{x} is stage in m (it is very important that the data is in the correct units).
#' @param data data.frame containing the variables specified in formula.
#' @param c_param stage for which there is zero discharge. If NULL, it is treated as unknown in the model and inferred from the data.
#' @param h_max maximum stage to which the rating curve should extrapolate to. If NULL, the maximum stage value in the data is selected as an upper bound.
#' @param parallel logical value indicating whether to run the MCMC in parallel or not. Defaults to TRUE.
#' @param num_cores integer between 1 and 4 (number of MCMC chains) indicating how many cores to use. Only used if parallel=TRUE. If NULL, the number of cores available on the device is detected automatically.
#' @param forcepoint logical vector of the same length as the number of rows in data. If an element at index \eqn{i} is TRUE it indicates that the rating curve should be forced through the \eqn{i}-th measurement. Use with care, as this will strongly influence the resulting rating curve.
#'
#' @details The generalized power-law model is of the form
#' \deqn{Q=a(h-c)^{f(h)}}
#' where \eqn{Q} is discharge, \eqn{h} is stage, \eqn{a} and \eqn{c} are unknown constants and \eqn{f} is a function of \eqn{h} referred to as the generalized power-law exponent.\cr\cr
#' The generalized power-law model is here inferred by using a Bayesian hierarchical model. The function \eqn{f} is modeled at the latent level as a fixed constant $b$ plus a continuous stochastic process,\eqn{\beta(h)}, which is assumed to be twice differentiable. The model is on a logarithmic scale
#' \deqn{\log(Q_i) = \log(a) + (b + \beta(h_i)) \log(h_i - c) + \varepsilon, i = 1,...,n}
#' where \eqn{\varepsilon} follows a normal distribution with mean zero and variance \eqn{\sigma_\varepsilon^2}, independent of stage. The stochastic process \eqn{\beta(h)} is assumed a priori to be a Gaussian process governed by a Matern covariance function with smoothness parameter \eqn{\nu = 2.5}. An efficient posterior simulation is achieved by sampling from the joint posterior density of the hyperparameters of the model, and then sampling from the density of the latent parameters conditional on the hyperparameters.\cr\cr
#' Bayesian inference is based on the posterior density and summary statistics such as the posterior mean and 95\% posterior intervals are based on the posterior density. Analytical formulas for these summary statistics are intractable in most cases and thus they are computed by generating samples from the posterior density using a Markov chain Monte Carlo simulation.
#' @return gplm0 returns an object of class "gplm0". An object of class "gplm0" is a list containing the following components: \cr
#' \item{\code{rating_curve}}{a data frame with 2.5\%, 50\% and 97.5\% percentiles of the posterior predictive distribution of the rating curve.}
#' \item{\code{rating_curve_mean}}{a data frame with 2.5\%, 50\% and 97.5\% percentiles of the posterior distribution of the mean of the rating curve.}
#' \item{\code{param_summary}}{a data frame with 2.5\%, 50\% and 97.5\% percentiles of the posterior distribution of latent- and hyperparameters. Additionally contains columns with r_hat and the effective number of samples for each parameter as defined in Gelman et al. (2013).}
#' \item{\code{beta_summary}}{a data frame with 2.5\%, 50\% and 97.5\% percentiles of the posterior distribution of \eqn{\beta}.}
#' \item{\code{Deviance_summary}}{a data frame with 2.5\%, 50\% and 97.5\% percentiles of the posterior distribution of the deviance.}
#' \item{\code{rating_curve_posterior}}{a matrix containing the full thinned posterior samples of the posterior predictive distribution of the rating curve (excluding burn-in).}
#' \item{\code{rating_curve_mean_posterior}}{a matrix containing the full thinned posterior samples of the posterior distribution of the mean of the rating curve (excluding burn-in).}
#' \item{\code{a_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{a}.}
#' \item{\code{b_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{b}.}
#' \item{\code{c_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{c}.}
#' \item{\code{sigma_eps_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{\sigma_{\varepsilon}}.}
#' \item{\code{sigma_beta_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{\sigma_{\beta}}.}
#' \item{\code{phi_beta_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{\phi_{\beta}}.}
#' \item{\code{sigma_eta_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{\sigma_{\eta}}.}
#' \item{\code{beta_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of \eqn{\beta}.}
#' \item{\code{Deviance_posterior}}{a numeric vector containing the full thinned posterior samples of the posterior distribution of the deviance excluding burn-in samples.}
#' \item{\code{D_hat}}{deviance at the median value of the parameters.}
#' \item{\code{effective_num_param_DIC}}{effective number of parameters, which is calculated as median(Deviance_posterior) minus D_hat.}
#' \item{\code{DIC}}{Deviance Information Criterion for the model, calculated as D_hat plus 2*effective_num_parameters_DIC.}
#' \item{\code{lppd}}{log pointwise predictive probability of the observed data under the model}
#' \item{\code{effective_num_param_WAIC}}{effective number of parameters, which is calculated by summing up the posterior variance of the log predictive density for each data point.}
#' \item{\code{WAIC}}{Watanabe-Akaike information criterion for the model, defined as -2*( lppd - effective_num_param_WAIC ).}
#' \item{\code{autocorrelation}}{a data frame with the autocorrelation of each parameter for different lags.}
#' \item{\code{acceptance_rate}}{proportion of accepted samples in the thinned MCMC chain (excluding burn-in).}
#' \item{\code{formula}}{object of type "formula" provided by the user.}
#' \item{\code{data}}{data provided by the user, ordered by stage.}
#' \item{\code{run_info}}{information about the input arguments and the specific parameters used in the MCMC chain.}
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
#' @references Hrafnkelsson, B., Sigurdarson, H., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#' @seealso \code{\link{summary.gplm0}} for summaries, \code{\link{predict.gplm0}} for prediction. It is also useful to look at \code{\link{spread_draws}} and \code{\link{plot.gplm0}} to help visualize the full posterior distributions.
#' @examples
#' \donttest{
#' data(krokfors)
#' set.seed(1)
#' gplm0.fit <- gplm0(formula=Q~W,data=krokfors,num_cores=2)
#' summary(gplm0.fit)
#' }
#' @export
gplm0 <- function(formula,data,c_param=NULL,h_max=NULL,parallel=TRUE,num_cores=NULL,forcepoint=rep(FALSE,nrow(data))){
#argument checking
stopifnot(inherits(formula,'formula'))
stopifnot(inherits(data,'data.frame'))
stopifnot(is.null(c_param) | is.double(c_param))
stopifnot(is.null(h_max) | is.double(h_max))
stopifnot(is.null(num_cores) | is.numeric(num_cores))
stopifnot(length(forcepoint)==nrow(data) & is.logical(forcepoint))
formula_args <- all.vars(formula)
stopifnot(length(formula_args)==2 & all(formula_args %in% names(data)))
model_dat <- as.data.frame(data[,all.vars(formula)])
forcepoint <- forcepoint[order(model_dat[,2,drop=TRUE])]
model_dat <- model_dat[order(model_dat[,2,drop=TRUE]),]
Q <- model_dat[,1,drop=TRUE]
h <- model_dat[,2,drop=TRUE]
if(!is.null(c_param) && min(h)<c_param) stop('c_param must be lower than the minimum stage value in the data')
if(any(Q<=0)) stop('All discharge measurements must but strictly greater than zero. If you know the stage of zero discharge, use c_param.')
MCMC_output_list <- gplm0.inference(y=log(Q),h=h,c_param=c_param,h_max=h_max,parallel=parallel,forcepoint=forcepoint,num_cores=num_cores)
param_names <- get_param_names('gplm0',c_param)
#prepare S3 model object to be returned
result_obj=list()
attr(result_obj, "class") <- "gplm0"
result_obj$a_posterior = MCMC_output_list$x[1,]
result_obj$b_posterior = MCMC_output_list$x[2,]
if(is.null(c_param)){
result_obj$c_posterior <- MCMC_output_list$theta[1,]
result_obj$sigma_eps_posterior <- MCMC_output_list$theta[2,]
result_obj$sigma_beta_posterior <- MCMC_output_list$theta[3,]
result_obj$phi_beta_posterior <- MCMC_output_list$theta[4,]
}else{
result_obj$c_posterior <- NULL
result_obj$sigma_eps_posterior <- MCMC_output_list$theta[1,]
result_obj$sigma_beta_posterior <- MCMC_output_list$theta[2,]
result_obj$phi_beta_posterior <- MCMC_output_list$theta[3,]
}
unique_h_idx <- !duplicated(MCMC_output_list$h)
h_unique <- unique(MCMC_output_list$h)
h_unique_order <- order(h_unique)
h_unique_sorted <- h_unique[h_unique_order]
h_idx_data <- match(h,h_unique_sorted)
result_obj$rating_curve_posterior <- exp(MCMC_output_list$y_post_pred[unique_h_idx,][h_unique_order,])
result_obj$rating_curve_mean_posterior <- exp(MCMC_output_list$y_post[unique_h_idx,][h_unique_order,])
result_obj$beta_posterior <- MCMC_output_list$x[3:nrow(MCMC_output_list$x),][h_unique_order,]
result_obj$f_posterior <- matrix(rep(result_obj$b_posterior,nrow(result_obj$beta_posterior)),nrow=nrow(result_obj$beta_posterior),byrow=TRUE) + result_obj$beta_posterior
result_obj$Deviance_posterior <- c(MCMC_output_list$D)
#summary objects
result_obj$rating_curve <- get_MCMC_summary(result_obj$rating_curve_posterior,h=h_unique_sorted)
result_obj$rating_curve_mean <- get_MCMC_summary(result_obj$rating_curve_mean_posterior,h=h_unique_sorted)
result_obj$beta_summary <- get_MCMC_summary(result_obj$beta_posterior,h=h_unique_sorted)
result_obj$f_summary <- get_MCMC_summary(result_obj$f_posterior,h=h_unique_sorted)
result_obj$param_summary <- get_MCMC_summary(rbind(MCMC_output_list$x[1,],MCMC_output_list$x[2,],MCMC_output_list$theta))
result_obj$param_summary$eff_n_samples <- MCMC_output_list$effective_num_samples
result_obj$param_summary$r_hat <- MCMC_output_list$r_hat
row.names(result_obj$param_summary) <- param_names
result_obj$Deviance_summary <- get_MCMC_summary(MCMC_output_list$D)
#Deviance calculations
result_obj$D_hat <- MCMC_output_list$D_hat
result_obj$effective_num_param_DIC <- result_obj$Deviance_summary[,'median']-result_obj$D_hat
result_obj$DIC <- result_obj$D_hat + 2*result_obj$effective_num_param_DIC
#WAIC calculations
waic_list <- calc_waic(result_obj,model_dat)
result_obj$lppd <- waic_list$lppd
result_obj$effective_num_param_WAIC <- waic_list$p_waic
result_obj$WAIC <- waic_list$waic
#Rhat and autocorrelation
autocorrelation_df <- as.data.frame(t(MCMC_output_list$autocorrelation))
names(autocorrelation_df) <- param_names
autocorrelation_df$lag <- 1:nrow(autocorrelation_df)
result_obj$autocorrelation <- autocorrelation_df[,c('lag',param_names)]
# store other information
result_obj$acceptance_rate <- MCMC_output_list[['acceptance_rate']]
result_obj$formula <- formula
result_obj$data <- model_dat
result_obj$run_info <- MCMC_output_list$run_info
return(result_obj)
}
#' @importFrom stats dist optim
gplm0.inference <- function(y,h,c_param=NULL,h_max=NULL,parallel=TRUE,forcepoint=rep(FALSE,length(h)),num_cores=NULL,num_chains=4,nr_iter=20000,burnin=2000,thin=5){
c_upper <- NULL
if(is.null(c_param)){
RC_plm0 <- get_model_components('plm0',y,h,c_param,h_max,forcepoint,h_min=NULL)
lhmc_sd <- sqrt(diag(solve(RC_plm0$H)))[1]
lhmc_mode <- RC_plm0$theta_m[1]
if(exp(lhmc_mode - 1.96*lhmc_sd)> 2){
warning('Dataset lacks measurements near point of zero flow and thus the model infers its upper bound (see c_upper in run_info).')
c_upper <- min(h) - exp(lhmc_mode - 1.96*lhmc_sd)
}
}
RC <- get_model_components('gplm0',y,h,c_param,h_max,forcepoint,h_min=c_upper)
output_list <- get_MCMC_output_list(theta_m=RC$theta_m,RC=RC,density_fun=RC$density_fun,
unobserved_prediction_fun=RC$unobserved_prediction_fun,
parallel=parallel,num_cores=num_cores,num_chains=num_chains,nr_iter=nr_iter,
burnin=burnin,thin=thin)
output_list$D_hat <- gplm0.calc_Dhat(output_list$theta,RC)
#refinement of list elements
if(is.null(RC$c)){
output_list$theta[1,] <- RC$h_min-exp(output_list$theta[1,])
output_list$theta[2,] <- sqrt(exp(output_list$theta[2,]))
output_list$theta[3,] <- sqrt(exp(output_list$theta[3,]))
output_list$theta[4,] <- exp(output_list$theta[4,])
}else{
output_list$theta[1,] <- sqrt(exp(output_list$theta[1,]))
output_list$theta[2,] <- sqrt(exp(output_list$theta[2,]))
output_list$theta[3,] <- exp(output_list$theta[3,])
}
output_list$x[1,] <- exp(output_list$x[1,])
output_list[['h']] <- c(RC$h,RC$h_u)
output_list[['acceptance_rate']] <- sum(output_list[['acceptance_vec']])/ncol(output_list[['acceptance_vec']])
output_list[['run_info']] <- list('c_param'=c_param,'h_max'=h_max,'forcepoint'=forcepoint,'nr_iter'=nr_iter,'num_chains'=num_chains,'burnin'=burnin,'thin'=thin,'c_upper'=c_upper)
return(output_list)
}
#' @importFrom stats rnorm dlnorm
gplm0.density_evaluation_known_c <- function(theta,RC){
log_sig_eps2 <- theta[1]
log_sig_b <- theta[2]
log_phi_b <- theta[3]
l=c(log(RC$h-RC$c))
varr=RC$epsilon*exp(log_sig_eps2)
if(any(varr>10^2)) return(list(p=-1e9)) # to avoid numerical instability
Sig_eps=diag(c(varr,0))
#Matern covariance
R_Beta=(1+sqrt(5)*RC$dist/exp(log_phi_b)+5*RC$dist^2/(3*exp(log_phi_b)^2))*
exp(-sqrt(5)*RC$dist/exp(log_phi_b))+diag(RC$n_unique)*RC$nugget
Sig_x=rbind(cbind(RC$Sig_ab,RC$m1),cbind(RC$m2,exp(2*log_sig_b)*R_Beta))
X=rbind(cbind(1,l,diag(l)%*%RC$A),RC$Z)
L=t(chol(X%*%Sig_x%*%t(X)+Sig_eps+diag(nrow(Sig_eps))*RC$nugget))
w=solve(L,RC$y-X%*%RC$mu_x)
p=-0.5%*%t(w)%*%w-sum(log(diag(L)))+
pri('sigma_eps2',log_sig_eps2 = log_sig_eps2,lambda_se=RC$lambda_se) +
pri('sigma_b',log_sig_b = log_sig_b, lambda_sb = RC$lambda_sb) +
pri('phi_b', log_phi_b = log_phi_b, lambda_pb = RC$lambda_pb)
W=solve(L,X%*%Sig_x)
x_u=RC$mu_x+t(chol(Sig_x))%*%rnorm(RC$n_unique+2)
sss=(X%*%x_u)-RC$y+rbind(sqrt(varr)*as.matrix(rnorm(RC$n)),0)
x=as.matrix(x_u-t(W)%*%solve(L,sss))
yp=(X %*% x)[1:RC$n,]
#posterior predictive draw
ypo=yp+as.matrix(rnorm(RC$n))*sqrt(varr)
D=-2*sum( log(dlnorm(exp(RC$y[1:RC$n,]),yp,sqrt(varr))) )
return(list("p"=p,"x"=x,"y_post"=yp,"y_post_pred"=ypo,"D"=D))
}
#' @importFrom stats rnorm dlnorm
gplm0.density_evaluation_unknown_c <- function(theta,RC){
zeta <- theta[1]
log_sig_eps2 <- theta[2]
log_sig_b <- theta[3]
log_phi_b <- theta[4]
l=c(log(RC$h-RC$h_min+exp(zeta)))
varr=RC$epsilon*exp(log_sig_eps2)
if(any(varr>10^2)) return(list(p=-1e9)) # to avoid numerical instability
Sig_eps=diag(c(varr,0))
#Matern covariance
R_Beta=(1+sqrt(5)*RC$dist/exp(log_phi_b)+5*RC$dist^2/(3*exp(log_phi_b)^2))*
exp(-sqrt(5)*RC$dist/exp(log_phi_b))+diag(RC$n_unique)*RC$nugget
Sig_x=rbind(cbind(RC$Sig_ab,RC$m1),cbind(RC$m2,exp(2*log_sig_b)*R_Beta))
X=rbind(cbind(1,l,diag(l)%*%RC$A),RC$Z)
L=t(chol(X%*%Sig_x%*%t(X)+Sig_eps+diag(nrow(Sig_eps))*RC$nugget))
w=solve(L,RC$y-X%*%RC$mu_x)
p=-0.5%*%t(w)%*%w-sum(log(diag(L)))+
pri('c',zeta = zeta,lambda_c = RC$lambda_c) +
pri('sigma_eps2',log_sig_eps2 = log_sig_eps2,lambda_se=RC$lambda_se) +
pri('sigma_b',log_sig_b = log_sig_b, lambda_sb = RC$lambda_sb) +
pri('phi_b', log_phi_b = log_phi_b, lambda_pb = RC$lambda_pb)
W=solve(L,X%*%Sig_x)
x_u=RC$mu_x+t(chol(Sig_x))%*%rnorm(RC$n_unique+2)
sss=(X%*%x_u)-RC$y+rbind(sqrt(varr)*as.matrix(rnorm(RC$n)),0)
x=as.matrix(x_u-t(W)%*%solve(L,sss))
yp=(X %*% x)[1:RC$n,]
#posterior predictive draw
ypo=yp+as.matrix(rnorm(RC$n))*sqrt(varr)
D=-2*sum( log(dlnorm(exp(RC$y[1:RC$n,]),yp,sqrt(varr))) )
return(list("p"=p,"x"=x,"y_post"=yp,"y_post_pred"=ypo,"D"=D))
}
#' @importFrom stats dlnorm
gplm0.calc_Dhat <- function(theta,RC){
theta_median <- apply(theta,1,median)
if(!is.null(RC$c)){
theta_median <- c(log(RC$h_min-RC$c),theta_median)
}
zeta <- theta_median[1]
log_sig_eps2 <- theta_median[2]
log_sig_b <- theta_median[3]
log_phi_b <- theta_median[4]
l=c(log(RC$h-RC$h_min+exp(zeta)))
varr=RC$epsilon*exp(log_sig_eps2)
if(any(varr>10^2)) return(list(p=-1e9)) # to avoid numerical instability
Sig_eps=diag(c(varr,0))
#Matern covariance
R_Beta=(1+sqrt(5)*RC$dist/exp(log_phi_b)+5*RC$dist^2/(3*exp(log_phi_b)^2))*
exp(-sqrt(5)*RC$dist/exp(log_phi_b))+diag(RC$n_unique)*RC$nugget
Sig_x=rbind(cbind(RC$Sig_ab,RC$m1),cbind(RC$m2,exp(2*log_sig_b)*R_Beta))
X=rbind(cbind(1,l,diag(l)%*%RC$A),RC$Z)
L=t(chol(X%*%Sig_x%*%t(X)+Sig_eps+diag(nrow(Sig_eps))*RC$nugget))
w=solve(L,RC$y-X%*%RC$mu_x)
x=RC$mu_x+Sig_x%*%(t(X)%*%solve(t(L),w))
yp=(X %*% x)[1:RC$n,]
D=-2*sum( log(dlnorm(exp(RC$y[1:RC$n,]),yp,sqrt(varr))) )
return(D)
}
#' @importFrom stats rnorm dist
gplm0.predict_u_known_c <- function(theta,x,RC){
#collecting parameters from the MCMC sample
#store particular hyperparameter values
log_sig_eps2 <- theta[1]
sig_b=exp(theta[2])
phi_b=exp(theta[3])
n=RC$n_unique
m=RC$n_u
#get sample of data variance using splines
varr_u = rep(exp(log_sig_eps2),m)
#combine stages from data with unobserved stages
h_all=c(RC$h_unique,RC$h_u)
#calculating distance matrix for h_all
dist_mat=as.matrix(dist(h_all))
#Covariance of the joint prior for betas from data and beta unobserved.
#Matern covariance formula used for v=5/2
sigma_all=sig_b^2*(1 + sqrt(5)*dist_mat/phi_b+(5*dist_mat^2)/(3*phi_b^2))*exp(-sqrt(5)*dist_mat/phi_b) + diag(length(h_all))*RC$nugget
sigma_11=sigma_all[1:n,1:n]
sigma_22=sigma_all[(n+1):(m+n),(n+1):(m+n)]
sigma_12=sigma_all[1:n,(n+1):(n+m)]
sigma_21=sigma_all[(n+1):(n+m),1:n]
#parameters for the posterior of beta_u
mu_x_u=sigma_21%*%solve(sigma_11,x[3:length(x)])
Sigma_x_u=(sigma_22-sigma_21%*%solve(sigma_11,sigma_12))
#a sample from posterior of beta_u drawn
beta_u=as.numeric(mu_x_u) + rnorm(ncol(Sigma_x_u)) %*% chol(Sigma_x_u)
#buidling blocks of the explanatory matrix X calculated
l=log(RC$h_u-RC$c)
X=if(length(l)>1) cbind(rep(1,m),l,diag(l)) else matrix(c(1,l,1),nrow=1)
x_u=c(x[1:2],beta_u)
#sample from the posterior of discharge y
yp_u <- c(X%*%x_u)
#make sure the log discharge at point of zero discharge is -Inf
yp_u[1] <- -Inf
ypo_u = yp_u + rnorm(m) * sqrt(varr_u)
return(list('x'=beta_u,'y_post'=yp_u,'y_post_pred'=ypo_u))
}
#' @importFrom stats rnorm dist
gplm0.predict_u_unknown_c <- function(theta,x,RC){
#store particular hyperparameter values
zeta <- theta[1]
log_sig_eps2 <- theta[2]
sig_b=exp(theta[3])
phi_b=exp(theta[4])
n=RC$n_unique
m=RC$n_u
#get sample of data variance using splines
varr_u = rep(exp(log_sig_eps2),m)
#combine stages from data with unobserved stages
h_all=c(RC$h_unique,RC$h_u)
#calculating distance matrix for h_all
dist_mat=as.matrix(dist(h_all))
#Covariance of the joint prior for betas from data and beta unobserved.
#Matern covariance formula used for v=5/2
sigma_all=sig_b^2*(1 + sqrt(5)*dist_mat/phi_b+(5*dist_mat^2)/(3*phi_b^2))*exp(-sqrt(5)*dist_mat/phi_b) + diag(length(h_all))*RC$nugget
sigma_11=sigma_all[1:n,1:n]
sigma_22=sigma_all[(n+1):(m+n),(n+1):(m+n)]
sigma_12=sigma_all[1:n,(n+1):(n+m)]
sigma_21=sigma_all[(n+1):(n+m),1:n]
#parameters for the posterior of beta_u
mu_x_u=sigma_21%*%solve(sigma_11,x[3:length(x)])
Sigma_x_u=(sigma_22-sigma_21%*%solve(sigma_11,sigma_12))
#a sample from posterior of beta_u drawn
beta_u=as.numeric(mu_x_u) + rnorm(ncol(Sigma_x_u)) %*% chol(Sigma_x_u)
above_c <- -(exp(zeta)-RC$h_min) < RC$h_u
m_above_c <- sum(above_c)
#buidling blocks of the explanatory matrix X calculated
l=log(RC$h_u[above_c]-RC$h_min+exp(zeta))
X=if(length(l)>1) cbind(rep(1,m_above_c),l,diag(l)) else matrix(c(1,l,1),nrow=1)
#vector of parameters
x_u=c(x[1:2],beta_u[above_c])
#sample from the posterior of discharge y
yp_u <- c(X%*%x_u)
ypo_u = yp_u + rnorm(m_above_c) * sqrt(varr_u[above_c])
return(list('x'=beta_u,'y_post'=c(rep(-Inf,m-m_above_c),yp_u),'y_post_pred'=c(rep(-Inf,m-m_above_c),ypo_u)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.