Nothing
#' Gibbs sampler for multivaiate Bayesian nonparametric inference with Whittle likelihood
#'
#' Obtain samples of the posterior of the multivariate Whittle likelihood in conjunction with an Hpd AGamma process prior on the spectral density matrix.
#' @details A detailed description of the method can be found in Section 5 in Meier (2018).
#' @param data numeric matrix; NA values are interpreted as missing values and treated as random
#' @param Ntotal total number of iterations to run the Markov chain
#' @param burnin number of initial iterations to be discarded
#' @param thin thinning number (postprocessing)
#' @param print_interval Number of iterations, after which a status is printed to console
#' @param numerical_thresh Lower (numerical pointwise) bound for the eigenvalues of the spectral density
#' @param adaption.N total number of iterations, in which the proposal variances (of r and U) are adapted
#' @param adaption.batchSize batch size of proposal adaption
#' @param adaption.tar target acceptance rate for adapted parameters
#' @param eta AGamma process parameter, real number > ncol(data)-1
#' @param omega AGamma process parameter, positive constant
#' @param Sigma AGamma process parameter, Hpd matrix
#' @param k.theta prior parameter for polynomial degree k (propto exp(-k.theta*k*log(k)))
#' @param kmax upper bound for polynomial degree of Bernstein-Dirichlet mixture (can be set to Inf, algorithm is faster with kmax<Inf due to pre-computation of basis functions, but values 500<kmax<Inf are very memory intensive)
#' @param trunc_l,trunc_r left and right truncation of Bernstein polynomial basis functions, 0<=trunc_l<trunc_r<=1
#' @param coars flag indicating whether coarsened or default bernstein polynomials are used (see Appendix E.1 in Ghosal and van der Vaart 2017)
#' @param L truncation parameter of Gamma process
#' @return list containing the following fields:
#'
#' \item{r,x,U}{traces of the AGamma process parameters}
#' \item{k}{posterior trace of polynomial degree}
#' \item{psd.median,psd.mean}{psd estimates: (pointwise, componentwise) posterior median and mean}
#' \item{psd.p05,psd.p95}{pointwise credibility interval}
#' \item{psd.u05,psd.u95}{uniform credibility interval, see (6.5) in Meier (2018)}
#' \item{lpost}{trace of log posterior}
#' @references A. Meier (2018)
#' \emph{A Matrix Gamma Process and Applications to Bayesian Analysis of Multivariate Time Series}
#' PhD thesis, OvGU Magdeburg
#' <https://opendata.uni-halle.de//handle/1981185920/13470>
#' @examples
#' \dontrun{
#'
#' ##
#' ## Example: Fit multivariate NP model to SOI/Recruitment series:
#' ##
#'
#' data <- cbind(as.numeric(astsa::soi-mean(astsa::soi)),
#' as.numeric(astsa::rec-mean(astsa::rec)) / 50)
#' data <- apply(data, 2, function(x) x-mean(x))
#'
#' # If you run the example be aware that this may take several minutes
#' print("example may take some time to run")
#' mcmc <- gibbs_vnp(data=data, Ntotal=10000, burnin=4000, thin=2)
#'
#' # Visualize results
#' plot(mcmc, log=T)
#'
#'
#' ##
#' ## Example 2: Fit multivariate NP model to VMA(1) data
#' ##
#'
#' n <- 256
#' ma <- rbind(c(-0.75, 0.5), c(0.5, 0.75))
#' Sigma <- rbind(c(1, 0.5), c(0.5, 1))
#' data <- sim_varma(model=list(ma=ma), n=n, d=2)
#' data <- apply(data, 2, function(x) x-mean(x))
#'
#' # If you run the example be aware that this may take several minutes
#' print("example may take some time to run")
#' mcmc <- gibbs_vnp(data=data, Ntotal=10000, burnin=4000, thin=2)
#'
#' # Plot spectral estimate, credible regions and periodogram on log-scale
#' plot(mcmc, log=T)
#' }
#' @importFrom Rcpp evalCpp
#' @useDynLib beyondWhittle, .registration = TRUE
#' @export
gibbs_vnp <- function(data,
Ntotal,
burnin,
thin=1,
print_interval=100,
numerical_thresh=1e-7,
adaption.N=burnin,
adaption.batchSize=50,
adaption.tar=.44,
eta=ncol(data),
omega=ncol(data),
Sigma=1e4*diag(ncol(data)),
k.theta=0.01,
kmax = 100*coars + 500*(!coars),
trunc_l = 0.1,
trunc_r = 0.9,
coars=F,
L = max(20, length(data) ^ (1 / 3))) {
if (!is.matrix(data) || !is.numeric(data)) {
stop("'data' must be numeric matrix with d columns and n rows")
}
d <- ncol(data)
if (d<2) {
stop("This function is not suited for univariate time series. Use gibbs_NP instead")
}
if (max(abs(apply(data,2,mean,na.rm=T))) > 1e-4) {
data <- apply(data,2,center,na.rm=T)
warning("Data has been mean centered")
}
if (eta <= d-1) {
stop("eta must be a number greater than d-1")
}
if (omega <= 0) {
stop("omega must be a positive number")
}
if (!(is.matrix(Sigma)) || (!is_hpd(Sigma)) || any(dim(Sigma)!=c(d,d))) {
stop("Sigma must be a Hermitian positive definite d times d matrix")
}
cl <- match.call()
mcmc_params <- list(Ntotal=Ntotal,
burnin=burnin,
thin=thin,
print_interval=print_interval,
numerical_thresh=numerical_thresh,
verbose=F,
Nadaptive=adaption.N,
adaption.batchSize=adaption.batchSize,
adaption.targetAcceptanceRate=adaption.tar)
prior_params <- list(eta=eta,
omega=omega,
Sigma=Sigma,
k.theta=k.theta,
kmax=kmax,
bernstein_l=trunc_l, # Note
bernstein_r=trunc_r, # Note
coarsened=coars,
L=L)
model_params <- psd_dummy_model()
# Call internal MCMC algorithm
mcmc_VNP <- gibbs_multivariate_nuisance(data=data,
mcmc_params=mcmc_params,
corrected=F,
prior_params=prior_params,
model_params=model_params)
#return(mcmc_VNP)
return(structure(list(call=cl,
data=data,
psd.median=complexValuedPsd(mcmc_VNP$fpsd.s),
psd.p05=complexValuedPsd(mcmc_VNP$fpsd.s05),
psd.p95=complexValuedPsd(mcmc_VNP$fpsd.s95),
psd.mean=complexValuedPsd(mcmc_VNP$fpsd.mean),
psd.u05=complexValuedPsd(mcmc_VNP$fpsd.uuci05),
psd.u95=complexValuedPsd(mcmc_VNP$fpsd.uuci95),
k=mcmc_VNP$k,
r=mcmc_VNP$r,
x=mcmc_VNP$Z,
U=mcmc_VNP$U,
missing_values=mcmc_VNP$missingValues_trace,
lpost=mcmc_VNP$lpostTrace,
algo="gibbs_vnp"),
class="gibbs_psd"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.