Nothing
HFun1 <- function(z, ind = 1) 4*plogis(z[ind[1]], 0, 0.3)
HFun2 <- function(z, ind = 1:2) 1/4*(z[ind[1]] + z[ind[2]] + 1/2*z[ind[1]]*z[ind[2]])
HFun3 <- function(z, ind = 1:2) 4*plogis(1/4*(z[ind[1]] + z[ind[2]] + 1/2*z[ind[1]]*z[ind[2]]), 0, 0.3)
#' Simulate dataset
#'
#' Simulate predictor, covariate, and continuous outcome data
#'
#' @export
#'
#' @inheritParams kmbayes
#' @param n Number of observations
#' @param M Number of predictor variables to generate
#' @param sigsq.true Variance of normally distributed residual error
#' @param beta.true Coefficient on the covariate
#' @param hfun An integer from 1 to 3 identifying which predictor-response function to generate
#' @param Zgen Method for generating the matrix Z of exposure variables, taking one of the values c("unif", "norm", "corr", "realistic")
#' @param ind select which predictor(s) will be included in the \code{h} function; how many predictors that can be included will depend on which \code{h} function is being used.
#' @examples
#' set.seed(5)
#' dat <- SimData()
#' @details
#' \itemize{
#' \item \code{hfun = 1}: A nonlinear function of the first predictor
#' \item \code{hfun = 2}: A linear function of the first two predictors and their product term
#' \item \code{hfun = 3}: A nonlinear and nonadditive function of the first two predictor variables
#' }
#'
#' @return a list containing the parameter values and generated variables of the simulated datasets
#'
SimData <- function(n = 100, M = 5, sigsq.true = 0.5,
beta.true = 2, hfun = 3, Zgen = "norm", ind = 1:2, family = "gaussian") {
stopifnot(n > 0, M > 0, sigsq.true >= 0, family %in% c("gaussian", "binomial"))
if (family == "binomial") {
sigsq.true <- 1
}
if (hfun == 1) {
HFun <- HFun1
} else if (hfun == 2) {
HFun <- HFun2
} else if (hfun == 3) {
HFun <- HFun3
} else {
stop("hfun must be an integer from 1 to 3")
}
if (Zgen == "unif") {
Z <- matrix(runif(n * M, -2, 2), n, M)
} else if (Zgen == "norm") {
Z <- matrix(rnorm(n * M), n, M)
} else if (Zgen == "corr") {
if (M < 3) {
stop("M must be an integer > 2 for Zgen = 'corr'")
}
Sigma <- diag(1, M, M)
Sigma[1,3] <- Sigma[3,1] <- 0.95
Sigma[2,3] <- Sigma[3,2] <- 0.3
Sigma[1,2] <- Sigma[2,1] <- 0.1
Z <- MASS::mvrnorm(n = n, mu = rep(0, M), Sigma = Sigma)
} else if (Zgen == "realistic") {
VarRealistic <- structure(c(0.72, 0.65, 0.45, 0.48, 0.08, 0.14, 0.16, 0.42, 0.2,
0.11, 0.35, 0.1, 0.11, 0.65, 0.78, 0.48, 0.55, 0.06, 0.09, 0.17,
0.2, 0.16, 0.11, 0.32, 0.12, 0.12, 0.45, 0.48, 0.56, 0.43, 0.11,
0.15, 0.23, 0.25, 0.28, 0.16, 0.31, 0.15, 0.14, 0.48, 0.55, 0.43,
0.71, 0.2, 0.23, 0.32, 0.22, 0.29, 0.14, 0.3, 0.22, 0.18, 0.08,
0.06, 0.11, 0.2, 0.95, 0.7, 0.45, 0.22, 0.29, 0.16, 0.24, 0.2,
0.13, 0.14, 0.09, 0.15, 0.23, 0.7, 0.8, 0.36, 0.3, 0.35, 0.13,
0.23, 0.17, 0.1, 0.16, 0.17, 0.23, 0.32, 0.45, 0.36, 0.83, 0.24,
0.37, 0.2, 0.36, 0.34, 0.25, 0.42, 0.2, 0.25, 0.22, 0.22, 0.3,
0.24, 1.03, 0.41, 0.13, 0.39, 0.1, 0.1, 0.2, 0.16, 0.28, 0.29,
0.29, 0.35, 0.37, 0.41, 0.65, 0.18, 0.3, 0.18, 0.16, 0.11, 0.11,
0.16, 0.14, 0.16, 0.13, 0.2, 0.13, 0.18, 0.6, 0.18, 0.13, 0.08,
0.35, 0.32, 0.31, 0.3, 0.24, 0.23, 0.36, 0.39, 0.3, 0.18, 0.79,
0.42, 0.12, 0.1, 0.12, 0.15, 0.22, 0.2, 0.17, 0.34, 0.1, 0.18,
0.13, 0.42, 1.27, 0.1, 0.11, 0.12, 0.14, 0.18, 0.13, 0.1, 0.25,
0.1, 0.16, 0.08, 0.12, 0.1, 0.67), .Dim = c(13L, 13L))
if (M > ncol(VarRealistic)) {
stop("Currently can only generate exposure data based on a realistic correlation structure with M = 13 or fewer. Please set M = 13 or use Zgen = c('unif','norm'")
} else if (M <= 13) {
Sigma <- VarRealistic[1:M, 1:M]
}
Z <- MASS::mvrnorm(n = n, mu = rep(0, M), Sigma = Sigma)
}
colnames(Z) <- paste0("z", 1:M)
X <- cbind(3*cos(Z[, 1]) + 2*rnorm(n))
eps <- rnorm(n, sd = sqrt(sigsq.true))
h <- apply(Z, 1, HFun)
mu <- X * beta.true + h
y <- drop(mu + eps)
if (family == "binomial") {
ystar <- y
y <- ifelse(ystar > 0, 1, 0)
}
dat <- list(n = n, M = M, sigsq.true = sigsq.true, beta.true = beta.true, Z = Z, h = h, X = X, y = y, hfun = hfun, HFun = HFun, family = family)
if (family == "binomial") {
dat$ystar <- ystar
}
dat
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.