R/defaultFunctions.R

Defines functions bootnet_GGMncv bootnet_piecewiseIsing bootnet_SVAR_lavaan bootnet_graphicalVAR bootnet_LoGo bootnet_TMFG bootnet_relimp bootnet_mgm bootnet_huge bootnet_adalasso bootnet_IsingSampler bootnet_IsingFit bootnet_cor bootnet_pcor bootnet_ggmModSelect bootnet_EBICglasso bootnet_argEstimator binarize null bootnet_correlate sampleSize_pairwise principalDirection_noCor principalDirection

Documented in binarize bootnet_adalasso bootnet_cor bootnet_EBICglasso bootnet_ggmModSelect bootnet_GGMncv bootnet_graphicalVAR bootnet_huge bootnet_IsingFit bootnet_IsingSampler bootnet_LoGo bootnet_mgm bootnet_pcor bootnet_piecewiseIsing bootnet_relimp bootnet_SVAR_lavaan bootnet_TMFG null

# Principal direction (multiplies columns with sign of first eigenvector correlations):
principalDirection <- function(corMat){
  ev <- eigen(corMat)
  ev1 <- sign(ev$vectors[,1])
  corMat <- corMat * outer(ev1, ev1)
  return(corMat)
}

principalDirection_noCor <- function(data){
  corMat <- cor(data, use = "pairwise.complete.obs")
  ev <- eigen(corMat)
  ev1 <- sign(ev$vectors[,1])
  for (i in 1:ncol(data)){
    data[,i] <-  data[,i] * ev1[i]
  }
  return(data)
}


# Function for sampleSize:
sampleSize_pairwise <- function(data, type = c( "pairwise_average",
                                                "maximum",
                                                "minimum",
                                                "pairwise_maximum",
                                               "pairwise_minimum",
                                               "pairwise_average_v1.5",
                                               "pairwise_maximum_v1.5",
                                               "pairwise_minimum_v1.5"
                                               )){
  type <- match.arg(type)

  if (type == "maximum"){

    sampleSize <- sum(apply(data,1,function(x)!all(is.na(x))))

  } else if (type == "minimum"){

    sampleSize <- sum(apply(data,1,function(x)!any(is.na(x))))

  } else {
    # Matrix with NAs:
    xmat <- as.matrix(!is.na(data))
    # product:
    misMatrix <- t(xmat) %*% xmat

    if (type == "pairwise_maximum"){
      sampleSize <- max(misMatrix[lower.tri(misMatrix)])
    } else  if (type == "pairwise_minimum"){
      sampleSize <- min(misMatrix[lower.tri(misMatrix)])
    } else  if (type == "pairwise_average"){
      sampleSize <- mean(misMatrix[lower.tri(misMatrix)])
    } else if (type == "pairwise_maximum_v1.5"){
        sampleSize <- max(misMatrix)
    } else  if (type == "pairwise_minimum_v1.5"){
        sampleSize <- min(misMatrix)
    } else  if (type == "pairwise_average_v1.5"){
        sampleSize <- mean(misMatrix)
    }


  }


  return(sampleSize)
}

# Function for correlation/covariance:
bootnet_correlate <- function(data, corMethod =  c("cor","cor_auto","cov","npn","spearman"),
                              corArgs = list(), missing = c("pairwise","listwise","fiml","stop"),
                              verbose = TRUE, nonPositiveDefinite = c("stop","continue"),
                              transform = c("none","rank","quantile")){
  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }

  nonPositiveDefinite <- match.arg(nonPositiveDefinite)
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)

  # Correlate data:
  # npn:
  if (corMethod == "npn"){
    data <- huge::huge.npn(data)
    corMethod <- "cor"
  }

  # cor_auto:
  if (corMethod == "cor_auto"){
    args <- list(data=data,missing=missing,verbose=verbose)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }
    corMat <- do.call(qgraph::cor_auto,args)
  } else if (corMethod%in%c("cor","cov","spearman")){
    # Normal correlations
    if (missing == "fiml"){
      stop("missing = 'fiml' only supported with corMethod = 'cor_auto'")
    }
    use <- switch(missing,
                  pairwise = "pairwise.complete.obs",
                  listwise = "complete.obs")

    args <- list(x=data,use=use)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }
    if (corMethod == "spearman"){
      args[["method"]] <- "spearman"
      corMethod <- "cor"
    }

    corMat <- do.call(corMethod,args)
  } else stop ("Correlation method is not supported.")

  if (nonPositiveDefinite == "stop"){
    if (!all(eigen(corMat)$values > 0)){
      stop("Correlation matrix is not positive definite.")
    }
  }

  return(corMat)
}


# Fooling R:
mgm <- NULL
mgmfit <- NULL

# Null function:
null <- function(...) NULL

### IsingFit ###
# prep fun (make binary if needed):
binarize <- function(x, split = "median", na.rm=TRUE, removeNArows = TRUE, verbose = TRUE){
  x <- as.data.frame(x)

  if (all(unlist(x) %in% c(0,1))){
    return(x)
  } else {

    if (is.function(split)){
      splitName <- deparse(substitute(split))
    } else {
      splitName <- split
    }
    if (verbose){
      warning(paste("Splitting data by",splitName))
    }

    if (is.character(split) || is.function(split)){
      splits <- sapply(x,split,na.rm=na.rm)
    } else {
      splits <- rep(split, length=ncol(x))
    }
    for (i in seq_len(ncol(x))){
      x[,i] <- 1 * (x[,i] >= splits[i])
    }

    if (removeNArows){
      x <- x[apply(x,1,function(xx)all(!is.na(xx))),,drop=FALSE]
    }

    return(x)
  }
}


### ARGUMENT ESTIMATOR ###
# Construct the estimator:
bootnet_argEstimator <- function(data, prepFun, prepArgs, estFun, estArgs, graphFun, graphArgs, intFun, intArgs, verbose = TRUE){
  # prepArgs$verbose <- verbose
  if ("verbose" %in% names(formals(prepFun))){
    prepArgs$verbose <- verbose
  }

  # Compute input:
  input <- do.call(prepFun, c(list(data), prepArgs))

  # Compute network:
  res <- do.call(estFun, c(list(input),estArgs))

  # Extract network:
  sampleGraph <- do.call(graphFun,c(list(res), graphArgs))

  # Extract graph:
  intercepts <-  do.call(intFun,c(list(res), intArgs))

  # Return:
  return(list(graph=sampleGraph, intercepts = intercepts))
}

### EBIC GLASSO ESTIMATOR ###
bootnet_EBICglasso <- function(
  data, # Dataset used
  tuning = 0.5, # tuning parameter
  corMethod = c("cor","cov","cor_auto","npn","spearman"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  sampleSize =  c( "pairwise_average",
                  "maximum",
                  "minimum",
                  "pairwise_maximum",
                  "pairwise_minimum",
                  "pairwise_average_v1.5",
                  "pairwise_maximum_v1.5",
                  "pairwise_minimum_v1.5"
  ), # Sample size when using missing = "pairwise"
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  refit = FALSE,
  principalDirection = FALSE,
  lambda.min.ratio = 0.01,
  nlambda = 100,
  threshold = FALSE,
  unlock = FALSE,
  nonPositiveDefinite = c("stop","continue"),
  transform = c("none","rank","quantile"),
  ...){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }

  nonPositiveDefinite <- match.arg(nonPositiveDefinite)
  if (!unlock){
  stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }

  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)
  # sampleSize <- match.arg(sampleSize)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - qgraph::EBICglasso for EBIC model selection\n    - using glasso::glasso")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  corMat <- bootnet_correlate(data = data, corMethod =  corMethod,
                                corArgs = corArgs, missing = missing,
                                verbose = verbose,nonPositiveDefinite=nonPositiveDefinite)




  # Sample size:
  if (missing == "listwise"){
    sampleSize <- nrow(na.omit(data))
  } else{
    sampleSize <- sampleSize_pairwise(data, sampleSize)
  }

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  # Estimate network:
  Results <- qgraph::EBICglasso(corMat,
                                n =  sampleSize,
                                gamma = tuning,
                                returnAllResults = TRUE,
                                refit = refit,
                                lambda.min.ratio=lambda.min.ratio,
                                nlambda = nlambda,
                                threshold=threshold,
                                ...)

  # Return:
  return(list(graph=Results$optnet,results=Results))
}



### EBIC GLASSO 2 ESTIMATOR ###
bootnet_ggmModSelect <- function(
  data, # Dataset used
  tuning = 0, # tuning parameter
  corMethod = c("cor","cov","cor_auto","npn","spearman"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  sampleSize =  c( "pairwise_average",
                   "maximum",
                   "minimum",
                   "pairwise_maximum",
                   "pairwise_minimum",
                   "pairwise_average_v1.5",
                   "pairwise_maximum_v1.5",
                   "pairwise_minimum_v1.5"
  ), # Sample size when using missing = "pairwise"
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  principalDirection = FALSE,
  start = c("glasso","empty","full"),
  stepwise = TRUE,
  nCores = 1,
  unlock = FALSE,
  nonPositiveDefinite = c("stop","continue"),
  transform = c("none","rank","quantile"),
  ...){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }

  nonPositiveDefinite <- match.arg(nonPositiveDefinite)
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }

  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)
  # sampleSize <- match.arg(sampleSize)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - qgraph::ggmModSelect for model selection\n    - using glasso::glasso")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  corMat <- bootnet_correlate(data = data, corMethod =  corMethod,
                              corArgs = corArgs, missing = missing,
                              verbose = verbose,nonPositiveDefinite=nonPositiveDefinite)

  # Sample size:
  if (missing == "listwise"){
    sampleSize <- nrow(na.omit(data))
  } else{
    sampleSize <- sampleSize_pairwise(data, sampleSize)
    # if (sampleSize == "maximum"){
    #   sampleSize <- sum(apply(data,1,function(x)!all(is.na(x))))
    # } else {
    #   sampleSize <- sum(apply(data,1,function(x)!any(is.na(x))))
    # }
  }

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  # Estimate network:
  Results <- qgraph::ggmModSelect(corMat,
                                  n =  sampleSize,
                                  gamma = tuning,
                                  start = start,
                                  stepwise = stepwise,
                                  verbose = verbose,
                                  nCores = 1,
                                  ...)
  # Return:
  return(list(graph=as.matrix(Results$graph),results=Results))
}

### PCOR ESTIMATOR ###
bootnet_pcor <- function(
  data, # Dataset used
  corMethod = c("cor","cov","cor_auto","npn","spearman"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  sampleSize =  c( "pairwise_average",
                   "maximum",
                   "minimum",
                   "pairwise_maximum",
                   "pairwise_minimum",
                   "pairwise_average_v1.5",
                   "pairwise_maximum_v1.5",
                   "pairwise_minimum_v1.5"
  ), # Sample size when using missing = "pairwise"
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  threshold = 0,
  alpha = 0.05,
  adjacency,
  principalDirection = FALSE,
  unlock = FALSE,
  nonPositiveDefinite = c("stop","continue"),
  transform = c("none","rank","quantile")){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  nonPositiveDefinite <- match.arg(nonPositiveDefinite)
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)
  # sampleSize <- match.arg(sampleSize)

  if (identical(threshold,"none")){
    threshold <- 0
  }

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - qgraph::qgraph(..., graph = 'pcor') for network computation")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    if (threshold != "none"){
      if (threshold != "locfdr"){
        msg <- paste0(msg,"\n  - psych::corr.p for significance thresholding")
      } else {
        msg <- paste0(msg,"\n  - fdrtool for false discovery rate")
      }

    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  corMat <- bootnet_correlate(data = data, corMethod =  corMethod,
                              corArgs = corArgs, missing = missing,
                              verbose = verbose,nonPositiveDefinite=nonPositiveDefinite)

  # Sample size:
  if (missing == "listwise"){
    sampleSize <- nrow(na.omit(data))
  } else{
    sampleSize <- sampleSize_pairwise(data, sampleSize)
    # if (sampleSize == "maximum"){
    #   sampleSize <- sum(apply(data,1,function(x)!all(is.na(x))))
    # } else {
    #   sampleSize <- sum(apply(data,1,function(x)!any(is.na(x))))
    # }
  }

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  # Estimate network:
  if (missing(adjacency)){
    Results <- getWmat(qgraph::qgraph(corMat,graph = "pcor",DoNotPlot = TRUE,threshold=threshold,alpha=alpha, sampleSize = sampleSize))
  } else {
    if (is.character(threshold)){
      stop("Significance thresholding not supported with fixed structure ('adjacency' is not missing). Obtain significance via bootstraps.")
    }
    diag(adjacency) <- 1
    zeroes <- which(adjacency==0,arr.ind=TRUE)

    if(!requireNamespace("glasso")) stop("'glasso' package needs to be installed.")
    glas <- suppressWarnings(glasso::glasso(corMat,rho = 0, zero = zeroes)$wi)

    Results <- as.matrix(qgraph::wi2net(glas))
    Results <- 0.5*(Results + t(Results))
  }


  # Return:
  return(list(graph=Results,results=Results))
}


### COR ESTIMATOR ###
bootnet_cor <- function(
  data, # Dataset used
  corMethod = c("cor","cov","cor_auto","npn","spearman"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  sampleSize =  c( "pairwise_average",
                   "maximum",
                   "minimum",
                   "pairwise_maximum",
                   "pairwise_minimum",
                   "pairwise_average_v1.5",
                   "pairwise_maximum_v1.5",
                   "pairwise_minimum_v1.5"
  ), # Sample size when using missing = "pairwise"
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  threshold = 0,
  alpha = 0.05,
  principalDirection = FALSE,
  unlock = FALSE,
  nonPositiveDefinite = c("stop","continue"),
  transform = c("none","rank","quantile")){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)
  # sampleSize <- match.arg(sampleSize)

  if (identical(threshold,"none")){
    threshold <- 0
  }

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    # msg <- paste0(msg,"\n  - qgraph::qgraph(..., graph = 'cor') for network computation")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    if (threshold != "none"){
      if (threshold != "locfdr"){
        msg <- paste0(msg,"\n  - psych::corr.p for significance thresholding")
      } else {
        msg <- paste0(msg,"\n  - fdrtool for false discovery rate")
      }

    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  corMat <- bootnet_correlate(data = data, corMethod =  corMethod,
                              corArgs = corArgs, missing = missing,
                              verbose = verbose,nonPositiveDefinite=nonPositiveDefinite)

  # Sample size:
  if (missing == "listwise"){
    sampleSize <- nrow(na.omit(data))
  } else{
    sampleSize <- sampleSize_pairwise(data, sampleSize)
    # if (sampleSize == "maximum"){
    #   sampleSize <- sum(apply(data,1,function(x)!all(is.na(x))))
    # } else {
    #   sampleSize <- sum(apply(data,1,function(x)!any(is.na(x))))
    # }
  }

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  # Estimate network:
  Results <- getWmat(qgraph::qgraph(corMat,graph = "cor",DoNotPlot = TRUE,threshold=threshold, sampleSize = sampleSize, alpha=alpha))

  # Return:
  return(list(graph=Results,results=Results))
}


### ISINGFIT ESTIMATOR ###
bootnet_IsingFit <- function(
  data, # Dataset used
  tuning = 0.25, # tuning parameter
  missing = c("listwise","stop"),
  verbose = TRUE,
  rule = c("AND","OR"),
  split = "median",
  principalDirection = FALSE,
  min_sum = -Inf,
  unlock = FALSE
){
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  missing <- match.arg(missing)
  rule <- match.arg(rule)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - IsingFit::IsingFit for network computation\n    - Using glmnet::glmnet")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }


  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }


  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Binarize:
  transformIsing <- FALSE
  originalEncoding <- c(0, 1)
  if (!all(unlist(data) %in% c(0,1))){
    if (length(unique(unlist(data))) == 2){
      transformIsing <- TRUE
      originalEncoding <- sort(unique(unlist(data)))
      dataBU <- data
      data[dataBU == originalEncoding[1]] <- 0
      data[dataBU == originalEncoding[2]] <- 1
    }
    data <- bootnet::binarize(data, split = split, verbose = verbose)
  }

  # Principal direction:
  if (principalDirection){
    data <- principalDirection_noCor(data)
  }

  # Estimate network:
  Results <- IsingFit::IsingFit(data, AND = rule == "AND", gamma = tuning,progressbar = verbose,plot = FALSE, min_sum = min_sum)


  # Transform back:
  if (transformIsing){
    Trans <- IsingSampler::LinTransform(Results$weiadj, Results$thresholds, from = c(0,1), to = originalEncoding)
  } else {
    Trans <- list(graph = Results$weiadj, thresholds = Results$thresholds)
  }

  # Return:
  return(list(graph = Trans$graph, intercepts = Trans$thresholds,
              results = Results))
}

### ISINGSAMPLER ESTIMATOR ###
bootnet_IsingSampler <- function(
  data, # Dataset used
  missing = c("listwise","stop"),
  verbose = TRUE,
  split = "median",
  method = c("uni","ll","pl","bi"),
  principalDirection = FALSE,
  unlock = FALSE,
  threshold = FALSE,
  alpha = 0.01,
  min_sum = -Inf,
  rule = c("AND","OR")
){
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  missing <- match.arg(missing)
  method <- match.arg(method)
  rule <- match.arg(rule)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - IsingSampler::EstimateIsing for network computation")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }

  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # if (method == "default"){
  #   if (ncol(data) > 20){
  #     method <- "uni"
  #     if (verbose){
  #       message("'method' set to 'uni'")
  #     }
  #   } else {
  #     method <- "ll"
  #     if (verbose){
  #       message("'method' set to 'll'")
  #     }
  #   }
  # }

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }


  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Binarize:
  transformIsing <- FALSE
  originalEncoding <- c(0, 1)
  if (!all(unlist(data) %in% c(0,1))){
    if (length(unique(unlist(data))) == 2){
      transformIsing <- TRUE
      originalEncoding <- sort(unique(unlist(data)))
      dataBU <- data
      data[dataBU == originalEncoding[1]] <- 0
      data[dataBU == originalEncoding[2]] <- 1
    }
    data <- bootnet::binarize(data, split = split, verbose = verbose)
  }

  # Principal direction:
  if (principalDirection){
    data <- principalDirection_noCor(data)
  }

  # Estimate network:
  if (method != "uni"){

      if (isTRUE(threshold)){
          stop("Thresholded Ising model only supported with method = 'uni'")
      }

      if (min_sum > -Inf){
          stop("min_sum only supported with method = 'uni'")
      }

      Results <- IsingSampler::EstimateIsing(as.matrix(data), method = method)
  } else {
      Results <- IsingSampler::EstimateIsing(as.matrix(data), method = method,
                     thresholding = threshold, alpha = alpha, AND = rule == "AND", min_sum=min_sum)
  }



  # Transform back:
  if (transformIsing){
    Trans <- IsingSampler::LinTransform(Results$graph, Results$thresholds, from = c(0,1), to = originalEncoding)
  } else {
    Trans <- list(graph = Results$graph, thresholds = Results$thresholds)
  }

  # Return:
  return(list(graph = Trans$graph, intercepts = Trans$thresholds,
              results = Results))
}


### PCOR ESTIMATOR ###
bootnet_adalasso <- function(
  data, # Dataset used
  missing = c("listwise","stop"),
  verbose = TRUE,
  nFolds = 10, # Number of folds
  principalDirection = FALSE,
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){
  stop("Adaptive LASSO default set is currently not supported due to CRAN removal of 'parcor' package.")
  #
  # transform <- match.arg(transform)
  # if (transform == "rank"){
  #   data <- rank_transformation(data)
  # } else if (transform == "quantile"){
  #   data <- quantile_transformation(data)
  # }
  #
  # if (!unlock){
  #   stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  # }
  #
  #
  # # Check arguments:
  # missing <- match.arg(missing)
  #
  # # Message:
  # if (verbose){
  #   msg <- "Estimating Network. Using package::function:"
  #   msg <- paste0(msg,"\n  - parcor::adalasso.net for network computation")
  #   # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
  #   message(msg)
  # }
  #
  # # First test if data is a data frame:
  # if (!(is.data.frame(data) || is.matrix(data))){
  #   stop("'data' argument must be a data frame")
  # }
  #
  # # If matrix coerce to data frame:
  # if (is.matrix(data)){
  #   data <- as.data.frame(data)
  # }
  #
  # # Obtain info from data:
  # N <- ncol(data)
  # Np <- nrow(data)
  #
  #
  # # Check missing:
  # if (missing == "stop"){
  #   if (any(is.na(data))){
  #     stop("Missing data detected and missing = 'stop'")
  #   }
  # } else {
  #   # listwise:
  #   data <- na.omit(data)
  # }
  #
  # # Principal direction:
  # if (principalDirection){
  #   data <- principalDirection_noCor(data)
  # }
  #
  # # Estimate network:
  # Results <- parcor::adalasso.net(data, k = nFolds)
  #
  # # Return:
  # return(list(graph=as.matrix(Matrix::forceSymmetric(Results$pcor.adalasso)),results=Results))
}


### HUGE ESTIMATOR ###
bootnet_huge <- function(
  data, # Dataset used
  tuning = 0.5,
  missing = c("listwise","stop"),
  verbose = TRUE,
  npn = TRUE, # Compute nonparanormal?
  criterion = c("ebic","ric","stars"),
  principalDirection = FALSE,
  lambda.min.ratio = 0.01,
  nlambda = 100,
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){

  if(!requireNamespace("huge")) stop("'huge' package needs to be installed.")

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }

  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  missing <- match.arg(missing)
  criterion <- match.arg(criterion)
  # method <- match.arg(method)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - huge::huge for network computation")
    msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }

  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)


  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }

  # Nonparanormal:
  if (npn){
    data <- huge::huge.npn(na.omit(as.matrix(data)),verbose = verbose)
  }

  # Principal direction:
  if (principalDirection){
    data <- principalDirection_noCor(data)
  }

  # Estimate network:
  Results <- huge::huge.select(huge::huge(data,method = "glasso",verbose=verbose,lambda.min.ratio=lambda.min.ratio,nlambda=nlambda), criterion = criterion,verbose = verbose,ebic.gamma = tuning)

  # Return:
  return(list(
    graph=as.matrix(qgraph::wi2net(as.matrix(Results$opt.icov))),
    results=Results))
}

### MGM ESTIMATOR ###
bootnet_mgm <- function(
  data, # Dataset used
  type,
  level,
  tuning = 0.25,
  missing = c("listwise","stop"),
  verbose = TRUE,
  criterion = c("EBIC","CV"),
  nFolds = 10,
  order = 2,
  rule = c("AND","OR"),
  binarySign, # Detected by default
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){



  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  missing <- match.arg(missing)
  criterion <- match.arg(criterion)
  rule <- match.arg(rule)
  # method <- match.arg(method)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - mgm::mgm for network computation\n    - Using glmnet::glmnet")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }

  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # # If matrix coerce to data frame:
  # if (is.matrix(data)){
  #   data <- as.data.frame(data)
  # }
  # If is not a matrix coerce to matrix (because mgm is silly):
  # if (!is.matrix(data)){
  data <- as.matrix(data)
  # }


  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)


  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }

  # Set type automatically:
  if (missing(type)){
    if (verbose){
      message("'type' argument not assigned. Setting type to 'c' for all binary variables and 'g' for all other variables.")
    }
    type <- ifelse(apply(data,2,function(x)all(x%in%c(0,1))),"c","g")
  }
  if (length(type) != ncol(data)){
    type <- rep(type, ncol(data))
  }

  transform <- match.arg(transform)
  if (transform == "rank"){
    data[,type == 'g'] <- rank_transformation(data[,type == 'g'])
  } else if (transform == "quantile"){
    data[,type == 'g'] <- quantile_transformation(data[,type == 'g'])
  }


  # Set level automatically:
  if (missing(level)){
    if (verbose){
      message("'level' argument not assigned. Setting level to 1 for all Gaussian/Poisson variables and number of unique values for all categorical variables")
    }

    level <- ifelse(type == "c", apply(data,2,function(x)length(unique(x))),1)
  }
  if (length(level) != ncol(data)){
    level <- rep(level, ncol(data))
  }

  # Estimate:
  # mgmfun <- "mgmfit"
  # if (packageVersion("mgm") >= "1.2.0"){
  # Check if all categorical binary variables are encoded 0 and 1:
  if (missing(binarySign)){
    if (any(type == "c" & level == 2)){
      whichBinary <- which(type == "c" & level == 2)
      enc <- apply(data[,whichBinary,drop=FALSE],2,function(x)all(x[!is.na(x)]%in%c(0L,1L)))
      if (!all(enc)){
        binarySign <- FALSE
      } else {
        binarySign <- TRUE
      }
    } else {
      binarySign <- FALSE
    }
  }

  log <- capture.output(Results <- mgm::mgm(
    data,verbatim = !verbose,  warnings = verbose, signInfo = FALSE,
    type=type,
    level=level,
    lambdaSel = criterion,
    lambdaFolds = nFolds,
    lambdaGam = tuning,
    k = order,
    pbar = verbose,
    ruleReg = rule, saveData = FALSE, binarySign = binarySign, ...))

  # Warn for unsigned:
  if (any(Results$pairwise$signs==0,na.rm = TRUE)){
    warning("Bootnet does not support unsigned edges and treats these as positive edges.")
  }
  Results$pairwise$signs[is.na(Results$pairwise$signs)] <- 0

  # Graph:
  Graph <- Results$pairwise$wadj
  Graph <- ifelse(Results$pairwise$signs==-1,-Graph,Graph)
  #
  # } else {
  #   log <- capture.output(Results <- do.call(mgmfun,list(
  #     data,
  #     type=type,
  #     lev=lev,
  #     lambda.sel = criterion,
  #     folds = nFolds,
  #     gam = tuning,
  #     d = degree,
  #     pbar = verbose,
  #     rule.reg = rule)))
  #
  #   # Warn for unsigned:
  #   if (any(Results$signs==0,na.rm = TRUE)){
  #     warning("Bootnet does not support unsigned edges and treats these as positive edges.")
  #   }
  #   Results$signs[is.na(Results$signs)] <- 0
  #
  #   # Graph:
  #   Graph <- Results$wadj
  #   Graph <- ifelse(Results$signs==-1,-Graph,Graph)
  # }

  # Return:
  return(list(
    graph=Graph,
    results=Results))
}



### RELATIVE IMPORTANCE ###
bootnet_relimp <- function(
  data, # Dataset used
  normalized = TRUE,
  type = "lmg",
  structureDefault = c("none", "custom", "EBICglasso", "pcor","IsingFit","IsingSampler", "huge","adalasso","mgm","cor","TMFG",
                       "ggmModSelect", "LoGo"),
  missing = c("listwise","stop"),
  ..., # Arguments sent to the structure function
  verbose = TRUE,
  threshold = 0,
  unlock = FALSE,
  transform = c("none","rank","quantile")){

  if(!requireNamespace("relaimpo")) stop("'relaimpo' package needs to be installed.")


  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }



  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  nVar <- ncol(data)
  structureDefault <- match.arg(structureDefault)

  # Check missing:
  missing <- match.arg(missing)
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }

  # Compute structure (if needed)
  if (structureDefault != "none"){
    if (verbose){
      message("Computing network structure")

      msg <- "Computing network structure. Using package::function:"
      if (structureDefault == "EBICglasso"){
        msg <- paste0(msg,"\n  - qgraph::EBICglasso for EBIC model selection\n    - using glasso::glasso")
      }
      if (structureDefault == "ggmModSelect"){
        msg <- paste0(msg,"\n  - qgraph::ggmModSelect for EBIC model selection\n    - using glasso::glasso")
      }
      if (structureDefault == "pcor"){
        msg <- paste0(msg,"\n  - qgraph::qgraph(..., graph = 'pcor') for network computation")
      }
      if (structureDefault == "IsingFit"){
        msg <- paste0(msg,"\n  - IsingFit::IsingFit for network computation\n    - Using glmnet::glmnet")
      }
      if (structureDefault == "IsingSampler"){
        msg <- paste0(msg,"\n  - IsingSampler::EstimateIsing for network computation")
      }
      if (structureDefault == "adalasso"){
        msg <- paste0(msg,"\n  - parcor::adalasso.net for network computation")
      }
      if (structureDefault == "huge"){
        msg <- paste0(msg,"\n  - huge::huge for network computation")
        msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
      }
      if (structureDefault == "mgm"){
        msg <- paste0(msg,"\n  - mgm::mgm for network computation")
      }

      message(msg)
    }
    if (structureDefault == "custom"){
      struc <- estimateNetwork(data, ...)
    } else {
      struc <- estimateNetwork(data, default = structureDefault, ..., verbose = FALSE)
    }
    struc <- struc$graph!=0
  } else {
    struc <- matrix(TRUE, nVar,nVar)
  }
  diag(struc) <- FALSE

  # Empty matrix:
  relimp <- matrix(0, nVar,nVar)
  if (is.null(names(data))){
    names(data) <- paste0("V",seq_len(nVar))
  }
  Vars <- names(data)

  # For every node, compute incomming relative importance:
  if (verbose){

    msg <- "Computing relative importance network. Using package::function:\n  - relaimpo::calc.relimp for edge weight estimation"
    message(msg)

    pb <- txtProgressBar(0,nVar,style=3)
  }
  for (i in 1:nVar){
    if (any(struc[-i,i])){
      formula <- as.formula(paste0(Vars[i]," ~ ",paste0(Vars[-i][struc[-i,i]],collapse=" + ")))
      if (sum(struc[-i,i])==1){

        # Only one predictor
        if (normalized){
          relimp[-i,i][struc[-i,i]] <- 1
        } else {
          res <- lm(formula, data)
          sum <- summary(res)
          relimp[-i,i][struc[-i,i]] <- sum$r.squared
        }

      } else {
        res <- relaimpo::calc.relimp(formula, data, rela = normalized)
        relimp[-i,i][struc[-i,i]] <- res@lmg
      }

    }
    if (verbose){
      setTxtProgressBar(pb, i)
    }
  }
  if (verbose){
    close(pb)
  }

  # threshold:
  relimp <- ifelse(relimp<threshold,0,relimp)

  # Return:
  return(relimp)
}


### Maximally Filtered Graph (TMFG) ###
bootnet_TMFG <- function(
  data, # Dataset used
  graphType = c("cor","pcor"),
  corMethod = c("cor","cov","cor","npn","cor_auto"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  principalDirection = FALSE,
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)

  # Message:
  if (verbose){
    if (graphType == "cor"){
      msg <- "Estimating correlation network. Using package::function:"
    } else {
      msg <- "Estimating partial correlation network. Using package::function:"
    }
    msg <- paste0(msg,"\n  - NetworkToolbox::TMFG for Triangulated Maximally Filtered Graph")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  # npn:
  if (corMethod == "npn"){
    if(!requireNamespace("huge")) stop("'huge' package needs to be installed.")
    data <- huge::huge.npn(data)
    corMethod <- "cor"
  }

  # cor_auto:
  if (corMethod == "cor_auto"){
    args <- list(data=data,missing=missing,verbose=verbose)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }
    corMat <- do.call(qgraph::cor_auto,args)
  } else if (corMethod%in%c("cor","cov")){
    # Normal correlations
    if (missing == "fiml"){
      stop("missing = 'fiml' only supported with corMethod = 'cor_auto'")
    }
    use <- switch(missing,
                  pairwise = "pairwise.complete.obs",
                  listwise = "complete.obs",
                  fiml = "fiml")

    args <- list(x=data,use=use)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }

    corMat <- do.call(corMethod,args)
  } else stop ("Correlation method is not supported.")

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  graphType <- match.arg(graphType)
  # If pcor, invert:
  if (graphType == "pcor"){
    corMat <- getWmat(qgraph(corMat, graph = "pcor", DoNotPlot=TRUE))
  }


  # Estimate network:
  Results <- NetworkToolbox::TMFG(corMat)

  # Return:
  return(list(graph=Results$A,results=Results))
}


### Local/Global Sparse Inverse Covariance Matrix ###
 <- function(
  data, # Dataset used
  corMethod = c("cor","cov","cor","npn","cor_auto"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  principalDirection = FALSE,
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - NetworkToolbox::LoGo for Local/Global Sparse Inverse Covariance Matrix")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  # npn:
  if (corMethod == "npn"){
    data <- huge::huge.npn(data)
    corMethod <- "cor"
  }

  # cor_auto:
  if (corMethod == "cor_auto"){
    args <- list(data=data,missing=missing,verbose=verbose)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }
    corMat <- do.call(qgraph::cor_auto,args)
  } else if (corMethod%in%c("cor","cov")){
    # Normal correlations
    if (missing == "fiml"){
      stop("missing = 'fiml' only supported with corMethod = 'cor_auto'")
    }
    use <- switch(missing,
                  pairwise = "pairwise.complete.obs",
                  listwise = "complete.obs")

    args <- list(x=data,use=use)
    if (length(corArgs) > 0){
      for (i in seq_along(corArgs)){
        args[[names(corArgs)[[i]]]] <- corArgs[[i]]
      }
    }

    corMat <- do.call(corMethod,args)
  } else stop ("Correlation method is not supported.")

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }


  # Estimate network:
  Results <- NetworkToolbox::LoGo(corMat,normal = FALSE,partial=TRUE,standardize = TRUE,...)

  # Return:
  return(Results)
}


####
### graphicalVAR ESTIMATOR ###
bootnet_graphicalVAR <- function(
  data, # Dataset used
  tuning = 0.5, # tuning parameter
  verbose = TRUE,
  principalDirection = FALSE,
  missing =c("listwise","stop"),
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){

  if(!requireNamespace("graphicalVAR")) stop("'graphicalVAR' package needs to be installed.")

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }

  dots <- list(...)
  missing <- match.arg(missing)

  if (any(names(dots)=="gamma")){
    stop("Please use 'tuning' argument for EBIC hyperparameter gamma")
  }


  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - graphicalVAR::graphicalVAR for model estimation")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!is(data,"tsData") && !(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (!is(data,"tsData") && is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }


  # Principal direction:
  if (principalDirection){
    data <- principalDirection_noCor(data)
  }


  # Estimate network:
  Results <- graphicalVAR::graphicalVAR(data,...,gamma = tuning, verbose = verbose)


  # Return:
  return(list(graph=list(
    contemporaneous = Results$PCC,
    temporal = Results$PDC),
    results=Results,
    specialData = list(
      data = Results$data,
      type = "graphicalVAR"
    )))
}



### stepwise SVAR ESTIMATOR ###
bootnet_SVAR_lavaan <- function(
  data, # Dataset used
  verbose = TRUE,
  principalDirection = FALSE,
  missing =c("listwise","stop"),
  criterion = "bic",
  eqThreshold = 1e-4,
  tempWhitelist,
  tempBlacklist,
  contWhitelist,
  contBlacklist,
  minimalModInd = 10,
  unlock = FALSE,
  transform = c("none","rank","quantile"),
  ...){

  if(!requireNamespace("lavaan")) stop("'lavaan' package needs to be installed.")

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }


  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Warn user:
  if (verbose){
    warning("default = 'SVAR_lavaan' is *experimental*!")
  }

  dots <- list(...)
  missing <- match.arg(missing)


  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - lavaan::lavaan for model estimation")
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!is(data,"tsData") && !(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (!is(data,"tsData") && is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }


  # Principal direction:
  if (principalDirection){
    data <- principalDirection_noCor(data)
  }


  # Dummy gvar call to get data:
  if (is(data,"tsData")){
    gvarData <- data
  } else {
    Results <- graphicalVAR::graphicalVAR(data,...,gamma = 0, lambda_beta = 0.1, lambda_kappa = 0.1,verbose = FALSE)
    gvarData <- Results$data
  }

  # Setup data for lavaan:
  lavData <- cbind(gvarData$data_c,gvarData$data_l)
  vars <- gvarData$vars

  # All possible model terms:
  lagVars <- paste0(vars,"_lag1")
  temp <- expand.grid(dep=vars,indep=lagVars,type="temporal",stringsAsFactors = FALSE)
  cont <- expand.grid(dep=vars,indep=vars,type="contemporaneous",stringsAsFactors = FALSE)
  cont <- cont[cont$dep != cont$indep,]
  allTerms <- rbind(temp,cont)

  # Blacklist (remove terms):
  if (!missing(tempBlacklist)){
    if (is.matrix(tempBlacklist)){
      tempBlacklist <- as.data.frame(tempBlacklist)
    }
    names(tempBlacklist) <- c("indep","dep")
    tempBlacklist$type <- "temporal"
    tempBlacklist$indep <- paste0(tempBlacklist$indep,"_lag1")
    allTerms <- suppressWarnings(anti_join(allTerms,tempBlacklist,by = c("dep", "indep", "type")))
  }

  if (!missing(contBlacklist)){
    if (is.matrix(contBlacklist)){
      contBlacklist <- as.data.frame(contBlacklist)
    }
    names(contBlacklist) <- c("indep","dep")
    contBlacklist$type <- "contemporaneous"
    allTerms <- suppressWarnings(anti_join(allTerms,contBlacklist,by = c("dep", "indep", "type")))
  }

  # Constrain residual cors to be zero (lavaan bug?):
  constraints <- paste(apply(utils::combn(vars,2),2,function(x)paste0(x[1]," ~~ 0*",x[2])),collapse="\n")

  # Indices of current model:
  allModInd <- seq_len(nrow(allTerms))
  curModInd <- which(allTerms$dep == gsub("_lag1","",allTerms$indep) & allTerms$type == "temporal")

  # Whitelist (include in start model):
  if (!missing(tempWhitelist)){
    if (is.matrix(tempWhitelist)){
      tempWhitelist <- as.data.frame(tempWhitelist)
    }
    names(tempWhitelist) <- c("indep","dep")
    tempWhitelist$type <- "temporal"
    tempWhitelist$indep <- paste0(tempWhitelist$indep,"_lag1")
    tempWhitelist$whitelist <- TRUE
    temp <- suppressWarnings(left_join(allTerms,tempWhitelist,by = c("dep", "indep", "type")))
    temp$whitelist[is.na(temp$whitelist)] <- FALSE
    curModInd <- c(curModInd,which(temp$whitelist))
  }

  if (!missing(contWhitelist)){
    if (is.matrix(contWhitelist)){
      contWhitelist <- as.data.frame(contWhitelist)
    }
    names(contWhitelist) <- c("indep","dep")
    contWhitelist$type <- "contemporaneous"
    contWhitelist$whitelist <- TRUE
    temp <- suppressWarnings(left_join(allTerms,contWhitelist,by = c("dep", "indep", "type")))
    temp$whitelist[is.na(temp$whitelist)] <- FALSE
    curModInd <- c(curModInd,which(temp$whitelist))
  }

  curMod <- paste0(allTerms$dep[curModInd], " ~ ",allTerms$indep[curModInd],collapse = '\n')
  curMod <- paste(curMod,"\n",constraints)

  # Fit model:
  curFit <- lavaan::sem(curMod, lavData)

  # Criterion:
  curCrit <- lavaan::fitMeasures(curFit,criterion)

  # Mod indices:
  modInds <- lavaan::modificationindices(curFit)
  modInds <- modInds[modInds$op == "~",]
  modInds <- modInds[order(modInds$mi,decreasing = TRUE),]
  modInds <- modInds[modInds$mi > minimalModInd,]

  # Test all options:
  if (nrow(modInds) != 0){
    repeat{
      testInds <- allModInd[!allModInd %in% curModInd & allTerms$dep %in% modInds$lhs & allTerms$indep %in% modInds$rhs]
      tests <- lapply(testInds,function(i){
        testModInds <- c(curModInd,i)
        curMod <- paste0(allTerms$dep[testModInds], " ~ ",allTerms$indep[testModInds],collapse = '\n')
        curMod <- paste(curMod,"\n",constraints)

        # Fit model:
        testFit <- lavaan::sem(curMod, lavData)

        # Criterion:
        testCrit <- lavaan::fitMeasures(testFit,criterion)

        return(list(
          fit = testFit,
          crit = testCrit
        ))
      })

      # crits:
      allCrits <- sapply(tests,"[[","crit")

      if (any(allCrits < curCrit)){
        # Test for equivalent:
        if (sum(allCrits < min(allCrits) + eqThreshold) > 1){
          # Select one at random:
          bestOptions <- which(allCrits < min(allCrits) + eqThreshold)
          best <- sample(bestOptions,1)

          warning("Severeral nearly equivalent best models found. Selecting one at random.")

        } else {
          best <- which.min(allCrits)
        }



        curModInd <- c(curModInd,testInds[best])
        curCrit <- tests[[best]]$crit
        curFit <- tests[[best]]$fit

        modInds <- lavaan::modificationindices(curFit)
        modInds <- modInds[modInds$op == "~",]
        modInds <- modInds[order(modInds$mi,decreasing = TRUE),]
        modInds <- modInds[modInds$mi > minimalModInd,]

        if (nrow(modInds) == 0){
          break
        }
      } else {
        break
      }
    }

  }

  # Construct networks:
  pars <- lavaan::parameterEstimates(curFit)
  nVars <- length(vars)
  tempNet <- matrix(0,nVars,nVars)
  contNet <- matrix(0,nVars,nVars)
  rownames(tempNet) <- colnames(tempNet) <-
    rownames(contNet) <- colnames(contNet) <-
    vars

  for (i in 1:nVars){
    for (j in 1:nVars){

      # Temporal:
      if (any(pars$rhs == lagVars[i] & pars$lhs == vars[j])){
        tempNet[i,j] <- pars$est[pars$rhs == lagVars[i] & pars$lhs == vars[j]]
      }

      # Contemporaneous:
      if (any(pars$rhs == vars[i] & pars$lhs == vars[j] & pars$op == "~")){
        contNet[i,j] <- pars$est[pars$rhs == vars[i] & pars$lhs == vars[j] & pars$op == "~"]
      }
    }
  }


  # Return:
  return(list(graph=list(
    contemporaneous = contNet,
    temporal = tempNet),
    results=curFit,
    specialData = list(
      data = gvarData,
      type = "graphicalVAR"
    )))
}

# Piecewise Ising:
### PIECEWISE ISING ESTIMATOR ###
bootnet_piecewiseIsing <- function(
  data, # Dataset used
  cutoff, # May not be missing
  missing = c("listwise","stop"),
  verbose = TRUE,
  # split = "median",
  IsingDefault = c("IsingSampler","IsingFit","custom"),
  zeroThreshold = 1, # Proportion of edges needed to be exactly 0 to set edge to zero
  minimalN = ncol(data) + 1,
  unlock = FALSE,
  ... # Arguments sent to estimator:
){
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }


  # Warn user:
  if (verbose){
    warning("default = 'piecewiseIsing' is *experimental*!")
  }

  # Check arguments:
  missing <- match.arg(missing)
  IsingDefault <- match.arg(IsingDefault)
  if (missing(cutoff)){
    stop("'cutoff' argument may not be missing.")
  }

  # Message:
  if (verbose){
    msg <- "Estimating Piecewise Ising Network. Using package::function:"
    if (IsingDefault == "IsingFit"){
      msg <- paste0(msg,"\n  - IsingFit::IsingFit for network computation\n    - Using glmnet::glmnet")
    }
    if (IsingDefault == "IsingSampler"){
      msg <- paste0(msg,"\n  - IsingSampler::EstimateIsing for network computation")
    }

    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }


  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  } else {
    # listwise:
    data <- na.omit(data)
  }


  # Binarize:
  transformIsing <- FALSE

  originalEncoding <- c(0, 1)
  if (!all(unlist(data) %in% c(0,1))){
    stop("Piecewise Ising only supported for 0, 1 encoding")
    #
    # if (length(unique(unlist(data))) == 2){
    #   stop("Piecewise Ising only supported for 0, 1 encoding")
    #   # transformIsing <- TRUE
    #   # originalEncoding <- sort(unique(unlist(data)))
    #   # dataBU <- data
    #   # data[dataBU == originalEncoding[1]] <- 0
    #   # data[dataBU == originalEncoding[2]] <- 1
    # }
    # data <- bootnet::binarize(data, split = split, verbose = verbose)
  }

  # Subset data according to cutoff:
  data <- data[rowSums(data) >= cutoff,]

  # Check number of cases:
  if (nrow(data) < minimalN){
    stop("Number of cases after subsetting is smaller than 'minimalN' argument.")
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  if (verbose){
    message(paste0(Np," cases remain after subsetting."))
  }

  # Compute pieces:
  combs <- utils::combn(seq_len(N),cutoff)
  nCombs <- ncol(combs)

  # Setup progress bar:
  if (verbose){
    pb <- txtProgressBar(0,nCombs,initial = 1,style=3)
  }

  # Empty array with results:
  Graphs_piecewise <- array(dim=c(N,N,nCombs))

  # Number of subjects used in estimation:
  nUsed <- numeric(nCombs)

  # Same but now in array form:
  nUsed_array <- array(dim=c(N,N,nCombs))

  # Estimate pieces:
  for (i in seq_len(nCombs)){

    # select subjects who endorse unique combination of items:
    subjects <- which(rowSums(data[,combs[,i]]) == cutoff)

    # How many:
    nUsed[i] <- length(subjects)

    # Subset data of remaining variables:
    subData <- data[subjects,-combs[,i],drop=FALSE]

    # Skip if N is lower than minimalN:
    if (nrow(subData) < minimalN){
      next
    }

    suppressMessages({
      suppressWarnings({

        try({
          # Compute piece of Ising model:
          # Estimate network:
          if (IsingDefault == "custom"){
            Res_sub <- estimateNetwork(subData, ...)
          } else {
            Res_sub <- estimateNetwork(subData, default = IsingDefault, ..., verbose = FALSE)
          }

          # Store in results:
          Graphs_piecewise[-combs[,i],-combs[,i],i] <- Res_sub$graph

          # Store N:
          nUsed_array[,,i] <- ifelse(!is.na(Graphs_piecewise[,,i]), nUsed[i], NA)
        })
      })
    })


    # Update progress bar:
    if (verbose){
      setTxtProgressBar(pb, i)
    }


  }

  # Close progress bar:
  if (verbose){
    close(pb)
  }

  # Compute average network (over nonzero estimates only):

  meanNet <- apply(ifelse(Graphs_piecewise==0,NA,Graphs_piecewise),1:2,stats::weighted.mean,w = nUsed, na.rm=TRUE)
  diag(meanNet) <- 0
  meanNet[is.na(meanNet) | is.nan(meanNet)] <- 0

  # Compute times exactly zero:
  propZero <- apply(Graphs_piecewise==0,1:2,stats::weighted.mean,w = nUsed, na.rm=TRUE)

  # Threshold:
  meanNet <- meanNet * (propZero < zeroThreshold)

  # Minimal N per edge:
  minN <- apply(nUsed_array,1:2, min, na.rm=TRUE)
  diag(minN) <- NA

  if (!is.null(colnames(data))){
    rownames(meanNet) <- colnames(meanNet) <- rownames(propZero) <- colnames(propZero) <-
      rownames(minN) <- colnames(minN) <- colnames(data)
  }

  # Return:
  return(list(graph = meanNet, intercepts = rep(NA, N),
              results = list(
                meanNet = meanNet,
                propZero = propZero,
                minN = minN
              )))

}

### GGMncv:
bootnet_GGMncv <- function(
  data, # Dataset used
  penalty = c("atan","selo","exp","log","sica","scad","mcp","lasso"),
  corMethod = c("cor","cov","cor_auto","npn","spearman"), # Correlation method
  missing = c("pairwise","listwise","fiml","stop"),
  sampleSize =  c( "pairwise_average",
                   "maximum",
                   "minimum",
                   "pairwise_maximum",
                   "pairwise_minimum",
                   "pairwise_average_v1.5",
                   "pairwise_maximum_v1.5",
                   "pairwise_minimum_v1.5"
  ), # Sample size when using missing = "pairwise"
  verbose = TRUE,
  corArgs = list(), # Extra arguments to the correlation function
  principalDirection = FALSE,
  unlock = FALSE,
  nonPositiveDefinite = c("stop","continue"),
  transform = c("none","rank","quantile"),
  ...){

  if(!requireNamespace("GGMncv")) stop("'GGMncv' package needs to be installed.")

  penalty <- match.arg(penalty)

  transform <- match.arg(transform)
  if (transform == "rank"){
    data <- rank_transformation(data)
  } else if (transform == "quantile"){
    data <- quantile_transformation(data)
  }

  nonPositiveDefinite <- match.arg(nonPositiveDefinite)
  if (!unlock){
    stop("You are using an internal estimator function without using 'estimateNetwork'. This function is only intended to be used from within 'estimateNetwork' and will not run now. To force manual use of this function (not recommended), use unlock = TRUE.")
  }

  # Check arguments:
  corMethod <- match.arg(corMethod)
  missing <- match.arg(missing)
  # sampleSize <- match.arg(sampleSize)

  # Message:
  if (verbose){
    msg <- "Estimating Network. Using package::function:"
    msg <- paste0(msg,"\n  - GGMncv::ggmncv for model estimation")
    if (corMethod == "cor_auto"){
      msg <- paste0(msg,"\n  - qgraph::cor_auto for correlation computation\n    - using lavaan::lavCor")
    }
    if (corMethod == "npn"){
      msg <- paste0(msg,"\n  - huge::huge.npn for nonparanormal transformation")
    }
    # msg <- paste0(msg,"\n\nPlease reference accordingly\n")
    message(msg)
  }


  # First test if data is a data frame:
  if (!(is.data.frame(data) || is.matrix(data))){
    stop("'data' argument must be a data frame")
  }

  # If matrix coerce to data frame:
  if (is.matrix(data)){
    data <- as.data.frame(data)
  }

  # Obtain info from data:
  N <- ncol(data)
  Np <- nrow(data)

  # Check missing:
  if (missing == "stop"){
    if (any(is.na(data))){
      stop("Missing data detected and missing = 'stop'")
    }
  }

  # Correlate data:
  corMat <- bootnet_correlate(data = data, corMethod =  corMethod,
                              corArgs = corArgs, missing = missing,
                              verbose = verbose,nonPositiveDefinite=nonPositiveDefinite)

  # Sample size:
  if (missing == "listwise"){
    sampleSize <- nrow(na.omit(data))
  } else{
    sampleSize <- sampleSize_pairwise(data, sampleSize)
    # if (sampleSize == "maximum"){
    #   sampleSize <- sum(apply(data,1,function(x)!all(is.na(x))))
    # } else {
    #   sampleSize <- sum(apply(data,1,function(x)!any(is.na(x))))
    # }
  }

  # Principal direction:
  if (principalDirection){
    corMat <- principalDirection(corMat)
  }

  # Estimate network:
  Results <- GGMncv::ggmncv(corMat,
                                  n =  sampleSize,
                                  penalty = penalty,
                            progress = verbose,
                                  ...)
  # Return:
  return(list(graph=as.matrix(Results$P),results=Results))
}

Try the bootnet package in your browser

Any scripts or data that you put into this service are public.

bootnet documentation built on May 29, 2024, 8:38 a.m.