R/CE.ZINB.R

Defines functions CE.ZINB

Documented in CE.ZINB

CE.ZINB <-
function(data, Nmax=10, eps=0.01, rho=0.05, M=200, h=5, a=0.8, b=0.8, distyp = 1, penalty = "BIC", parallel=FALSE){
    
    if(is.data.frame(data) == "FALSE" | is.null(dim(data)[2])) {
      print("Error in data: dataframe only")                                                           
    } else if(dim(data)[2] != 1) {
      print("Error in data: single column dataframe only")                               
    } else { 
      
      if(distyp == 1 & penalty == "BIC"){
        Melite <- M * rho
        L <- length(data[, 1])
        L0 <- 1      
        k <- seq(0, Nmax, 1)
        r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T)) 

        if(parallel == TRUE & .Platform$OS.type == "windows"){
            cl <- makeCluster(parallel::detectCores(), type = "SOCK") 
            clusterExport(cl, c("ce.4betaZINB.BIC", "betarand", "fun.alpha", "fun.beta", "BICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
            clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "r"), envir = environment())  
            registerDoParallel(cl)
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, r)
            stopCluster(cl)   
                                      
          
        } else if (parallel == TRUE & .Platform$OS.type == "unix"){
            registerDoParallel(parallel::detectCores())
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, r)
                                     
          
        } else {
          sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.4betaZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, r)
        }
        
        Bic.summary <- sapply(sim, "[[", 2)
        opt.loci <- which(Bic.summary == min(Bic.summary))
        loci.BIC <- sim[[opt.loci]]$loci
        
        if(length(loci.BIC) >= 3) {
          return(list("No.BPs" = length(loci.BIC) - 2,"BP.Loc" = loci.BIC[2 : (length(loci.BIC) - 1)], "BIC" = sim[[opt.loci]]$BIC, "ll" = sim[[opt.loci]]$LogLike))
        } else {
          return(paste("No Break-Points are Estimated")) 
        }
        
      } else if(distyp == 2 & penalty == "BIC"){
        
        Melite <- M*rho
        L <- length(data[, 1])
        L0 <- 1      
        k <- seq(0, Nmax, 1)
        r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T)) 
        
        if(parallel == TRUE & .Platform$OS.type == "windows"){
            cl <- makeCluster(parallel::detectCores(), type = "SOCK") 
            clusterExport(cl, c("ce.simNormalZINB.BIC", "normrand", "BICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
            clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "b", "r"), envir=environment())  
            registerDoParallel(cl)
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, b, r)
            stopCluster(cl)

          } else if (parallel == TRUE & .Platform$OS.type == "unix"){
            registerDoParallel(parallel::detectCores())
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, b, r)
            
          } else {
            sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.simNormalZINB.BIC(k, data, h, L0, L, M, Melite, eps, a, b, r)
          }
        
        Bic.summary <- sapply(sim, "[[", 2)
        opt.loci <- which(Bic.summary == min(Bic.summary))
        loci.BIC <- sim[[opt.loci]]$loci
        
        if(length(loci.BIC) >= 3) {
          return(list("No.BPs" = length(loci.BIC) - 2,"BP.Loc" = loci.BIC[2 : (length(loci.BIC) - 1)], "BIC" = sim[[opt.loci]]$BIC, "ll" = sim[[opt.loci]]$LogLike))
        } else {
          return(paste("No Break-Points are Estimated")) 
        }          
        
      } else if(distyp == 1 & penalty == "AIC"){
      
        Melite <- M*rho
        L <- length(data[, 1])
        L0 <- 1      
        k <- seq(0, Nmax, 1)
        r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T)) 
        
        if(parallel == TRUE & .Platform$OS.type == "windows"){
            cl <- makeCluster(parallel::detectCores(), type = "SOCK") 
            clusterExport(cl, c("ce.4betaZINB.AIC", "betarand", "fun.alpha", "fun.beta", "AICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
            clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "r"), envir = environment())  
            registerDoParallel(cl)
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, r)
            stopCluster(cl)   

        } else if (parallel == TRUE & .Platform$OS.type == "unix"){
            registerDoParallel(parallel::detectCores())
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, r)
          
        } else sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.4betaZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, r)
        
        Aic.summary <- sapply(sim, "[[", 2)
        opt.loci <- which(Aic.summary == min(Aic.summary))
        
        loci.AIC <- sim[[opt.loci]]$loci
        
        if(length(loci.AIC) >= 3) {
          return(list("No.BPs" = length(loci.AIC) - 2,"BP.Loc" = loci.AIC[2 : (length(loci.AIC) - 1)], "AIC" = sim[[opt.loci]]$AIC, "ll" = sim[[opt.loci]]$LogLike))
        } else {
          return(paste("No Break-Points are Estimated")) 
        }

      } else if(distyp == 2 & penalty == "AIC"){
       
        Melite <- M*rho
        L <- length(data[, 1])
        L0 <- 1      
        k <- seq(0, Nmax, 1)
        r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T)) 
        
        if(parallel == TRUE & .Platform$OS.type == "windows"){
            cl <- makeCluster(parallel::detectCores(), type = "SOCK") 
            clusterExport(cl, c("ce.simNormalZINB.AIC", "normrand", "AICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
            clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "b", "r"), envir=environment())  
            registerDoParallel(cl)
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, b, r)
            stopCluster(cl)
        
        } else if (parallel == TRUE & .Platform$OS.type == "unix"){
            registerDoParallel(parallel::detectCores())
            sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, b, r)

        } else {
          sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.simNormalZINB.AIC(k, data, h, L0, L, M, Melite, eps, a, b, r)
        }

        Aic.summary <- sapply(sim, "[[", 2)
        opt.loci <- which(Aic.summary == min(Aic.summary))
        loci.AIC <- sim[[opt.loci]]$loci
        
        if(length(loci.AIC) >= 3) {
          return(list("No.BPs" = length(loci.AIC) - 2,"BP.Loc" = loci.AIC[2 : (length(loci.AIC) - 1)], "AIC" = sim[[opt.loci]]$AIC, "ll" = sim[[opt.loci]]$LogLike))
        } else {
          return(paste("No Break-Points are Estimated")) 
        }          
      }
    }
}

Try the breakpoint package in your browser

Any scripts or data that you put into this service are public.

breakpoint documentation built on May 29, 2017, 11 a.m.