Nothing
macrocaic <- function(formula, data, phy, names.col, macroMethod = "RRD",
stand.contr = TRUE, robust=Inf, ref.var=NULL, node.depth=NULL,
macroMinSize=3, equal.branch.length=FALSE)
{
# Program Flow:
# 1) setup - check arguments,
# 2) use model functions to get design and response matrices, including all NA data
# 3) feed the model matrices into a function to calculate nodal values and contrasts
# 4) feed the returned contrast versions of the design and response matrices into lm.fit
# TODO - return node age/height
# TODO - allow caic to be used as a contrast calculator
# TODO - explicit check for polytomy.brlen problems
# CHECKS AND SETUP
# - test to see if there is a comparative data object and if not then
# retrofit the remaining arguments into a comparative data object.
if(! missing(data)){
if(! inherits(data, 'comparative.data')){
if(missing(names.col)) stop('names column is missing')
names.col <- deparse(substitute(names.col))
data <- caicStyleArgs(data=data, phy=phy, names.col=names.col, warn.dropped=TRUE)
}
}
# extract the data and phylogeny
cdata <- data # in case the original is needed later
phy <- data$phy
data <- data$data
# check node.depth is sensible
if(! is.null(node.depth)){
if(node.depth%%1 != 0 || node.depth < 1) stop("node.depth must be a positive integer greater than 1.")
}
# check branch lengths
if(as.logical(equal.branch.length)) {# doesn't get evaluated if FALSE or zero
phy$edge.length <- rep(2, nrow(phy$edge))
} else {
if(is.null(phy$edge.length)) stop("The phylogeny does not contain branch lengths and macrocaic has not been set to use equal branch lengths.")
if(any(phy$edge.length < 0)) stop("The phylogeny contains negative branch lengths and macrocaic has not been set to use equal branch lengths.")
}
# useful info...
root <- length(phy$tip.label) + 1
unionData <- nrow(data)
# MACROCAIC SPECIFIC
# set intermediate branch length to use at polytomies - CAIC used 1, whereas MacroCAIC requires 0
# in order to give subnode contrast calculation that is equivalent to a weighted mean
crunch.brlen <- 0
# check out the method for calculating species richness contrasts
resp.type <- match.arg(macroMethod, c("RRD", "PDI"))
# GET THE BASIC MODEL MATRICES
# drop any intercept from the formula
formula <- update(formula, . ~ . - 1) # no effect if the interecept is already omitted
if(is.empty.model(formula)) stop("Macrocaic requires an explanatory variable to determine the direction of species richness contrasts.\nModels of the form nSpp ~ 1 are not meaningful.")
# Get the model frame including missing data
# and check the number of complete cases in the model frame
initMf <- model.frame(formula, data, na.action="na.pass")
initMfComplete <- complete.cases(initMf)
# TODO - think whether this check is always sufficient...
if(sum(initMfComplete) < 2 ) stop("Fewer than two taxa contain complete data for this analysis")
# macro analyses with missing data on species richness are a bad thing
macroMf <- as.matrix(model.response(initMf))
colnames(macroMf) <- with(attributes(attr(initMf, "terms")), rownames(factors)[response])
if(any(is.na(macroMf))) stop("MacroCAIC analyses cannot have missing species richness values")
if(any(macroMf <= 0)) stop("Species richness values cannot be negative or zero")
if(any((macroMf %% 1) > 0)) stop("Non-integer species richness values present")
# CALCULATE MODEL
# GET THE MODEL MATRIX and Model Response
# get the model frame, matrix and response
# these show the values at the tips for each term
mf <- model.frame(formula, data, na.action=na.pass)
# macroCAIC is not intended to handle categorical data, but could be used
# to control for ordered factors where intervals are feasible equal
# HANDLE CATEGORICAL VARIABLES:
# find the factors
varClass <- attributes(attributes(mf)$terms)$dataClasses
termFactors <- attributes(attributes(mf)$terms)$factors
factorCols <- names(varClass)[varClass %in% c("ordered","factor")]
if(any(varClass %in% c("ordered","factor") & rowSums(termFactors) > 1)){
stop("Interactions using categorical variables not supported in macrocaic analyses")}
termClass <- apply(termFactors,2,function(X) unique(varClass[as.logical(X)]))
for(fact in factorCols){
# - check whether all factors are ordered or binary
currFact <- with(mf, get(fact))
lev <- levels(currFact)
ord <- is.ordered(currFact)
if(length(lev) > 2 & ! ord) stop("Unordered non-binary factor included in model formula.")
# - modify the model frame object to make the factors numeric
# - quote the names of the variables to assign to
eval(parse(text=paste("mf$'", fact, "'<- as.numeric(currFact)", sep="")))
attr(mf, "dataClasses") <- rep("numeric", dim(termFactors)[2])
}
# MODEL RESPONSE
mr <- model.response(mf)
# turn into a column matrix
mr <- as.matrix(mr)
colnames(mr) <- as.character(formula[2])
# get the design matrix
md <- model.matrix(formula, mf)
# sort out the reference variable
if(! is.null(ref.var)){
ref.var <- deparse(substitute(ref.var))
if(is.na(match(ref.var, colnames(md)))) stop("Reference variable not found in the model predictors")
} else {
ref.var <- colnames(md)[1]
}
# add to the design matrix - this strips the assign and contrast attributes so save...
attrMD <- attributes(md)
md <- cbind(mr, md)
# NOW GET CONTRASTS AND NODAL VALUES
contr <- contrCalc(md, phy, ref.var, picMethod="crunch", crunch.brlen, macro=macroMethod)
# the first column has been calculated as a macro contrast
mrC <- contr$contr[,1,drop=FALSE]
mdC <- contr$contr[,-1,drop=FALSE]
# standardize the contrasts if required
# (don't standardize macro contrasts or categorical variables in Brunch)
if(stand.contr){
notCateg <- ! termClass %in% c("factor","ordered")
mdC[,notCateg] <- mdC[,notCateg, drop=FALSE]/sqrt(contr$var.contr)
}
# FEED THE RETURNED DESIGN AND RESPONSE MATRICES INTO THE MODELLING FUNCTIONS
# assemble the data into a finished contrast object
ContrObj <- list()
ContrObj$contr$response <- mrC
ContrObj$contr$explanatory <- mdC
ContrObj$nodalVals$response <- contr$nodVal[,1,drop=FALSE]
ContrObj$nodalVals$explanatory <- contr$nodVal[,-1,drop=FALSE]
ContrObj$contrVar <- contr$var.contr
ContrObj$nChild <- contr$nChild
## need to keep the assign and contrasts attributes from the model
## matrix with the contrast object in order to get anova() methods to work
## can't store assign permanently with explanatory contrasts because validNode subsetting strips attributes
attr(ContrObj, 'assign') <- attrMD$assign
if(! is.null(attrMD$contrasts)) attr(ContrObj, 'contrasts') <- attrMD$contrasts
# gather the row ids of NA nodes to drop from the model (missing data plus polytomies in macro analyses)
validNodes <- with(ContrObj$contr, complete.cases(explanatory) & complete.cases(response))
# macrocaic can exclude species poor nodes (default is to exclude sister species pairs)
validNodes[which(ContrObj$nodalVal$response < macroMinSize)] <- FALSE
# enforce any node depth requirement
if(! is.null(node.depth)){
validNodes[ContrObj$nodeDepth > node.depth] <- FALSE
}
# save for the user
ContrObj$validNodes <- validNodes
# feed the contr.model.response and contr.model.matrix
# into lm.fit to get the model and then set up the lm object
# - need to use lm.fit here rather than calling the model on
# data=contrData because any functions in the formula are now
# set in the column names - don't want lm to try and reinterpret
# them in parsing the formula.
# - the problem then becomes how to get the model to refer to the dataset
## need to pass the assign and contrasts attributes over from the model
## matrix in order to get anova() methods to work
contrMD <- ContrObj$contr$explanatory[validNodes,,drop=FALSE]
contrRS <- ContrObj$contr$response[validNodes,,drop=FALSE]
attr(contrMD, 'assign') <- attr(ContrObj, 'assign') ## replace attributes
if(! is.null(attr(ContrObj, 'contrasts'))) attr(contrMD, 'contrasts') <- attr(ContrObj, 'contrasts')
mod <- with(ContrObj$contr, lm.fit(contrMD, contrRS))
class(mod) <- "lm"
# assemble the output
# return fitted model and contrasts
RET <- list(contrast.data=ContrObj, data=cdata, mod=mod)
class(RET) <- c("caic")
# convert the ContrObj into a data frame...
contrData <- with(ContrObj$contr, as.data.frame(cbind(response,explanatory)))
contrData <- contrData[validNodes, ,drop=FALSE]
RET$mod$call <- substitute(lm(FORM, data=contrData), list(FORM=formula))
RET$mod$terms <- attr(mf, "terms")
# put the model.frame in to the lm object so that predict, etc. calls work
RET$mod$model <- contrData
attr(RET$mod$model, "terms") <- attr(mf, "terms")
## Add studentized residuals: need to use matching in case of invalid nodes
stRes <- rstudent(mod)
SRallNodes <- rep(NA, length(RET$contrast.data$validNodes))
names(SRallNodes) <- names(RET$contrast.data$contrVar)
SRallNodes[match(names(stRes), names(SRallNodes))] <- stRes
RET$contrast.data$studentResid <- SRallNodes
# add some attributes
attr(RET, "contr.method") <- "crunch"
attr(RET, "macro.method") <- macroMethod
attr(RET, "stand.contr") <- stand.contr
attr(RET, "robust") <- robust
# lastly, test for studentised outliers
if(any(stRes > robust)){
RET <- caic.robust(RET, robust)
}
return(RET)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.