R/pointLabel.R

Defines functions pointLabel

Documented in pointLabel

pointLabel <- function(x, y = NULL, labels = seq(along = x), cex = 1,
                       method = c("SANN", "GA"),
                       allowSmallOverlap = FALSE,
                       trace = FALSE,
                       doPlot = TRUE,
                       ...)
{
  if (!missing(y) && (is.character(y) || is.expression(y))) {
    labels <- y
    y <- NULL
  }
  labels <- as.graphicsAnnot(labels)
  boundary <- par()$usr
  xyAspect <- par()$pin[1] / par()$pin[2] # width / height
  # scale to a unit area from 0 to 1
  toUnityCoords <- function(xy) {
    list(x = (xy$x - boundary[1]) / (boundary[2] - boundary[1]) * xyAspect,
         y = (xy$y - boundary[3]) / (boundary[4] - boundary[3]) / xyAspect)
  }
  toUserCoords <- function(xy) {
    list(x = boundary[1] + xy$x / xyAspect * (boundary[2] - boundary[1]), 
         y = boundary[3] + xy$y * xyAspect * (boundary[4] - boundary[3])) 
  }
  z <- xy.coords(x, y, recycle = TRUE)
  z <- toUnityCoords(z)
  x <- z$x
  y <- z$y
  if (length(labels) < length(x)) 
    labels <- rep(labels, length(x))
  method <- match.arg(method)
  
  if (allowSmallOverlap) 
    nudgeFactor <- 0.02 
  n_labels <- length(x)
  # There are eight possible alignment codes, corresponding to the 
  # corners and side mid-points of the rectangle
  # Codes are 1:8
  # Code 7 (top right) is the most preferred
  width <- (strwidth(labels, units = "figure", cex = cex) + 0.015) * xyAspect
  height <- (strheight(labels, units = "figure", cex = cex) + 0.015) / xyAspect 
  
  gen_offset <- function(code)
    c(-1,  -1,  -1,  0,  0,   1,  1,   1)[code] * (width/2) +
    1i * c(-1,   0,   1, -1,  1,  -1,  0,   1)[code] * (height/2)
  
  
  # Finds intersection area of two rectangles
  rect_intersect <- function(xy1, offset1, xy2, offset2) {
    w <- pmin(Re(xy1+offset1/2), Re(xy2+offset2/2)) - pmax(Re(xy1-offset1/2), Re(xy2-offset2/2))   
    h <- pmin(Im(xy1+offset1/2), Im(xy2+offset2/2)) - pmax(Im(xy1-offset1/2), Im(xy2-offset2/2))   
    w[w <= 0] <- 0
    h[h <= 0] <- 0
    w*h
  }
  
  nudge <- function(offset) {
    # Nudge the labels slightly if they overlap:
    doesIntersect <- rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
                                    xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0
    
    pyth <- abs(xy[rectidx1] + offset[rectidx1] - xy[rectidx2] - offset[rectidx2]) / nudgeFactor
    eps <- 1.0e-10
    
    for (i in which(doesIntersect & pyth > eps)) {
      idx1 <- rectidx1[i]
      idx2 <- rectidx2[i]
      vect <- (xy[idx1] + offset[idx1] - xy[idx2] - offset[idx2]) / pyth[idx1]
      offset[idx1] <- offset[idx1] + vect
      offset[idx2] <- offset[idx2] - vect
    }
    offset
  }
  
  objective <- function(gene) {
    offset <- gen_offset(gene)
    
    # Allow for "bending" the labels a bit
    if (allowSmallOverlap) offset <- nudge(offset)
    
    if (!is.null(rectidx1))
      area <- sum(rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
                                 xy[rectidx2] + offset[rectidx2], rectv[rectidx2]))
    else
      area <- 0
    
    # Penalize labels which go outside the image area
    # Count points outside of the image
    n_outside <- sum(Re(xy + offset - rectv/2) < 0 | Re(xy + offset + rectv/2) > xyAspect |
                       Im(xy + offset - rectv/2) < 0 | Im(xy + offset + rectv/2) > 1/xyAspect)
    res <- 1000 * area + n_outside
    #cat(n_outside,"\n")
    res
  }
  
  # Make a list of label rectangles in their reference positions,
  # centered over the map feature; the real labels are displaced
  # from these positions so as not to overlap
  # Note that some labels can be bigger than others
  xy <- x + 1i * y
  rectv <- width + 1i * height
  
  rectidx1 <- rectidx2 <- array(0, (length(x)^2 - length(x)) / 2)
  k <- 0
  for (i in 1:length(x))
    for (j in seq(len=(i-1))) {
      k <- k + 1
      rectidx1[k] <- i
      rectidx2[k] <- j
    }
  canIntersect <- rect_intersect(xy[rectidx1], 2 * rectv[rectidx1],
                                 xy[rectidx2], 2 * rectv[rectidx2]) > 0
  rectidx1 <- rectidx1[canIntersect]
  rectidx2 <- rectidx2[canIntersect]
  if (trace) cat("possible intersects =", length(rectidx1), "\n")
  
  if (trace) cat("portion covered =", sum(rect_intersect(xy, rectv,xy,rectv)),"\n")
  
  GA <- function() {
    # Make some starting genes
    n_startgenes <- 1000     # size of starting gene pool 
    n_bestgenes <- 30       # genes selected for cross-breeding
    prob <- 0.2
    
    # Mutation function: O(n^2) time
    mutate <- function(gene) {
      offset <- gen_offset(gene)
      # Directed mutation where two rectangles intersect
      doesIntersect <- rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
                                      xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0
      
      for (i in which(doesIntersect)) {
        gene[rectidx1[i]] <- sample(1:8, 1)
      }
      # And a bit of random mutation, too
      for (i in seq(along=gene))
        if (runif(1) <= prob)
          gene[i] <- sample(1:8, 1)
      gene
    }
    
    # Crossbreed two genes, then mutate at "hot spots" where intersections remain
    crossbreed <- function(g1, g2)
      ifelse(sample(c(0,1), length(g1), replace = TRUE) > .5, g1, g2)
    
    
    genes <- matrix(sample(1:8, n_labels * n_startgenes, replace = TRUE), n_startgenes, n_labels)
    
    for (i in 1:10) {
      scores <- array(0., NROW(genes))
      for (j in 1:NROW(genes))
        scores[j] <- objective(genes[j,])
      rankings <- order(scores)
      genes <- genes[rankings,]
      bestgenes <- genes[1:n_bestgenes,]
      bestscore <- scores[rankings][1]
      if (bestscore == 0) {
        if (trace) cat("overlap area =", bestscore, "\n")
        break
      }
      # At each stage, we breed the best genes with one another
      genes <- matrix(0, n_bestgenes^2, n_labels)
      for (j in 1:n_bestgenes)
        for (k in 1:n_bestgenes)
          genes[n_bestgenes*(j-1) + k,] <- mutate(crossbreed(bestgenes[j,], bestgenes[k,]))
      
      genes <- rbind(bestgenes, genes)
      if (trace) cat("overlap area =", bestscore, "\n")
    }
    nx <- Re(xy + gen_offset(bestgenes[1,]))
    ny <- Im(xy + gen_offset(bestgenes[1,]))
    list(x = nx, y = ny)
  }
  SANN <- function() {
    # Make some starting "genes"
    #gene <- sample(1:8, n_labels, repl = TRUE)
    gene <- rep(8, n_labels)
    score <- objective(gene)
    bestgene <- gene
    bestscore <- score
    T <- 2.5
    for (i in 1:50) {
      k <- 1
      for (j in 1:50) {
        newgene <- gene
        newgene[sample(1:n_labels, 1)] <- sample(1:8,1)
        newscore <- objective(newgene)
        if (newscore <= score || runif(1) < exp((score - newscore) / T)) {
          # keep the new set if it has the same or better score or
          # if it's worse randomly based on the annealing criteria
          k <- k + 1
          score <- newscore
          gene <- newgene
        }
        if (score <= bestscore) {
          bestscore <- score
          bestgene <- gene
        }
        if (bestscore == 0 || k == 10) break
      }
      if (bestscore == 0) break
      if (trace) cat("overlap area =", bestscore, "\n")
      T <- 0.9 * T
    }
    
    if (trace) cat("overlap area =", bestscore, "\n")
    nx <- Re(xy + gen_offset(bestgene))
    ny <- Im(xy + gen_offset(bestgene))
    list(x = nx, y = ny)
  }
  if (method == "SANN")
    xy <- SANN()
  else
    xy <- GA()
  xy <- toUserCoords(xy)
  if (doPlot)
    text(xy, labels, cex = cex, ...)
  invisible(xy)
}

Try the car package in your browser

Any scripts or data that you put into this service are public.

car documentation built on Sept. 27, 2024, 9:06 a.m.