R/helper_functions.R

Defines functions getBinaryTargetLevel setBinaryTargetLevel validateBinaryTargetLevel check_caretList_classes check_caretList_model_types check_bestpreds_resamples check_bestpreds_indexes check_bestpreds_obs check_bestpreds_preds extractModelName validateCustomModel extractModelTypes bestPreds extractBestPreds makePredObsMatrix

Documented in bestPreds check_bestpreds_indexes check_bestpreds_obs check_bestpreds_preds check_bestpreds_resamples check_caretList_classes check_caretList_model_types extractBestPreds extractModelName extractModelTypes getBinaryTargetLevel makePredObsMatrix setBinaryTargetLevel validateBinaryTargetLevel validateCustomModel

#####################################################
# Configuration Functions
#####################################################
#' @title Return the configured target binary class level
#' @description For binary classification problems, ensemble
#' stacks and certain performance measures require an awareness
#' of which class in a two-factor outcome is the "target" class.
#' By default, this class will be assumed to be the first level in
#' an outcome factor but that setting can be overridden using
#' \code{setBinaryTargetLevel(2L)}.
#' @seealso setBinaryTargetLevel
#' @return Currently configured binary target level (as integer equal to 1 or 2)
#' @export
getBinaryTargetLevel <- function() {
  arg <- getOption("caret.ensemble.binary.target.level", default = 1L)
  validateBinaryTargetLevel(arg)
}

#' @title Set the target binary class level
#' @description For binary classification problems, ensemble
#' stacks and certain performance measures require an awareness
#' of which class in a two-factor outcome is the "target" class.
#' By default, the first level in an outcome factor is used but
#' this value can be overridden using \code{setBinaryTargetLevel(2L)}
#' @param level an integer in \{1, 2\} to be used as target outcome level
#' @seealso getBinaryTargetLevel
#' @export
setBinaryTargetLevel <- function(level){
  level <- validateBinaryTargetLevel(level)
  options(caret.ensemble.binary.target.level=level)
}

#' @title Validate arguments given as binary target level
#' @description Helper function used to ensure that target
#' binary class levels given by clients can be coerced to an integer
#' and that the resulting integer is in \{1, 2\}.
#' @param arg argument to potentially be used as new target level
#' @return Binary target level (as integer equal to 1 or 2)
validateBinaryTargetLevel <- function(arg){
  val <- suppressWarnings(try(as.integer(arg), silent=T))
  if (!is.integer(val) || !val %in% c(1L, 2L))
    stop(paste0(
      "Specified target binary class level is not valid.  ",
      "Value should be either 1 or 2 but '", arg, "' was given ",
      "(see caretEnsemble::setBinaryTargetLevel for more details)"))
  val
}


#####################################################
# Misc. Functions
#####################################################
#' @title Calculate a weighted standard deviation
#' @description Used to weight deviations among ensembled model preditions
#'
#' @param x a vector of numerics
#' @param w a vector of weights equal to length of x
#' @param na.rm a logical indicating how to handle missing values, default = FALSE
wtd.sd <- function (x, w = NULL, na.rm = FALSE) {
  if (na.rm) {
    w <- w[i <- !is.na(x)]; x <- x[i]
    }
    n <- length(w)
    xWbar <- weighted.mean(x, w, na.rm = na.rm)
    wbar <- mean(w)
    out <- n/((n-1)*sum(w)^2)*(sum((w*x-wbar*xWbar)^2)-2*xWbar*sum((w-wbar)*(w*x-wbar*xWbar))+xWbar^2*sum((w-wbar)^2))
    return(out)
}

#####################################################
# caretList check functions
#####################################################
#' @title Checks caretList model classes
#' @description This function checks caretList classes
#'
#' @param list_of_models a list of caret models to check
check_caretList_classes <- function(list_of_models){

  #Check that we have a list of train models
  stopifnot(is(list_of_models, "caretList"))
  stopifnot(all(sapply(list_of_models, is, "train")))
  return(invisible(NULL))
}

#' @title Checks that caretList models are all of the same type.
#' @description Validate a caretList
#' @param list_of_models a list of caret models to check
#' @importFrom caret modelLookup
check_caretList_model_types <- function(list_of_models){
  #Check that models have the same type
  types <- sapply(list_of_models, function(x) x$modelType)
  type <- types[1]
  stopifnot(all(types==type)) #TODO: Maybe in the future we can combine reg and class models

  #Check that the model type is VALID
  stopifnot(all(types %in% c("Classification", "Regression")))

  #Warn that we haven"t yet implemented multiclass models
  # add a check that if this is null you didn"t set savePredictions in the trainControl
  #TODO: add support for non-prob models (e.g. rFerns)
  if (type=="Classification" & length(unique(list_of_models[[1]]$pred$obs))!=2){
    if(is.null(unique(list_of_models[[1]]$pred$obs))){
      stop("No predictions saved by train. Please re-run models with trainControl set with savePredictions = TRUE.")
    } else {
      stop("Not yet implemented for multiclass problems")
    }
  }

  #Check that classification models saved probabilities
  #TODO: ALLOW NON PROB MODELS!
  if (type=="Classification"){
    probModels <- sapply(list_of_models, function(x) is.function(x$modelInfo$prob))
    if(!all(probModels)) stop("All models for classification must be able to generate class probabilities.")
    classProbs <- sapply(list_of_models, function(x) x$control$classProbs)
    if(!all(classProbs)){
      bad_models <- names(list_of_models)[!classProbs]
      bad_models <- paste(bad_models, collapse=", ")
      stop(
        paste0(
          "The following models were fit by caret::train with no class probabilities: ",
          bad_models,
          ".\nPlease re-fit them with trainControl(classProbs=TRUE)"))
    }
  }
  return(invisible(NULL))
}

#' @title Check resamples
#' @description Check that the resamples from a caretList are valid
#'
#' @param modelLibrary a list of predictins from caret models
check_bestpreds_resamples <- function(modelLibrary){
  #TODO: ID which model(s) have bad row indexes
  resamples <- lapply(modelLibrary, function(x) x[["Resample"]])
  names(resamples) <- names(modelLibrary)
  check <- length(unique(resamples))
  if(check != 1){
    stop("Component models do not have the same re-sampling strategies")
  }
  return(invisible(NULL))
}

#' @title Check row indexes
#' @description Check that the row indexes from a caretList are valid
#'
#' @param modelLibrary a list of predictins from caret models
check_bestpreds_indexes <- function(modelLibrary){
  #TODO: ID which model(s) have bad row indexes
  rows <- lapply(modelLibrary, function(x) x[["rowIndex"]])
  names(rows) <- names(modelLibrary)
  check <- length(unique(rows))
  if(check != 1){
    stop("Re-sampled predictions from each component model do not use the same rowIndexes from the origial dataset")
  }
  return(invisible(NULL))
}

#' @title Check observeds
#' @description Check that a list of observed values from a caretList are valid
#'
#' @param modelLibrary a list of predictins from caret models
check_bestpreds_obs <- function(modelLibrary){
  #TODO: ID which model(s) have bad row indexes
  obs <- lapply(modelLibrary, function(x) x[["obs"]])
  names(obs) <- names(modelLibrary)
  check <- length(unique(obs))
  if(check != 1){
    stop("Observed values for each component model are not the same.  Please re-train the models with the same Y variable")
  }
  return(invisible(NULL))
}

#' @title Check predictions
#' @description Check that a list of predictions from a caretList are valid
#'
#' @param modelLibrary a list of predictins from caret models
check_bestpreds_preds <- function(modelLibrary){
  #TODO: ID which model(s) have bad preds
  #TODO: Regression models should be numeric, classification models should have numeric class probs
  pred <- lapply(modelLibrary, function(x) x[["pred"]])
  names(pred) <- names(modelLibrary)
  classes <- unique(sapply(pred, class))
  check <- length(classes)
  if(check != 1){
    stop(
      paste0(
        "Component models do not all have the same type of predicitons.  Predictions are a mix of ",
        paste(classes, collapse=", "),
        ".")
    )
  }
  return(invisible(NULL))
}

#####################################################
# Extraction functions
#####################################################
#' @title Extract the method name associated with a single train object
#' @description Extracts the method name associated with a single train object.  Note
#' that for standard models (i.e. those already prespecified by caret), the
#' "method" attribute on the train object is used directly while for custom
#' models the "method" attribute within the model$modelInfo attribute is
#' used instead.
#' @param x a single caret train object
#' @return Name associated with model
extractModelName <- function(x) {
  if (is.list(x$method)){
    validateCustomModel(x$method)$method
  } else if (x$method == "custom"){
    validateCustomModel(x$modelInfo)$method
  } else x$method
}

#' @title Validate a custom caret model info list
#' @description Currently, this only ensures that all model info lists
#' were also assigned a "method" attribute for consistency with usage
#' of non-custom models
#' @param x a model info list (e.g. \code{getModelInfo("rf", regex=F)\[[1]]})
#' @return validated model info list (i.e. x)
validateCustomModel <- function(x) {
  if (is.null(x$method))
    stop(paste(
      "Custom models must be defined with a \"method\" attribute containing the name",
      "by which that model should be referenced.  Example: my.glm.model$method <- \"custom_glm\""))
  x
}

#' @title Extracts the model types from a list of train model
#' @description Extracts the model types from a list of train model
#'
#' @param list_of_models an object of class caretList
extractModelTypes <- function(list_of_models){

  types <- sapply(list_of_models, function(x) x$modelType)
  type <- types[1]

  #TODO: Maybe in the future we can combine reg and class models
  #Also, this check is redundant, but I think that"s ok
  stopifnot(all(types==type))
  stopifnot(all(types %in% c("Classification", "Regression")))
  return(type)
}

#' @title Extract the best predictions from a train object
#' @description Extract predictions for the best tune from a model
#' @param x a train object
#' @importFrom data.table data.table setorderv
bestPreds <- function(x){
  stopifnot(is(x, "train"))
  stopifnot({
    x$control$savePredictions %in% c("all", "final") |
      x$control$savePredictions == TRUE
  })
  a <- data.table(x$bestTune, key=names(x$bestTune))
  b <- data.table(x$pred, key=names(x$bestTune))
  b <- b[a, ]
  sink <- gc(reset=TRUE)
  setorderv(b, c("Resample", "rowIndex"))
  return(b)
}

#' @title Extract the best predictions from a list of train objects
#' @description Extract predictions for the best tune from a list of caret models
#' @param list_of_models an object of class caretList or a list of caret models
#' @importFrom pbapply pblapply
extractBestPreds <- function(list_of_models){
  out <- lapply(list_of_models, bestPreds)
  if(is.null(names(out))){
    names(out) <- make.names(sapply(list_of_models, extractModelName), unique=TRUE)
  }
  sink <- gc(reset=TRUE)
  return(out)
}

#' @title Make a prediction matrix from a list of models
#' @description Extract obs from one models, and a matrix of predictions from all other models, a
#' helper function
#'
#' @param  list_of_models an object of class caretList
#' @importFrom data.table set rbindlist dcast.data.table
makePredObsMatrix <- function(list_of_models){

  #caretList Checks
  check_caretList_classes(list_of_models)
  check_caretList_model_types(list_of_models)

  #Make a list of models
  modelLibrary <- extractBestPreds(list_of_models)
  model_names <- names(modelLibrary)

  #Model library checks
  check_bestpreds_resamples(modelLibrary) #Re-write with data.table?
  check_bestpreds_indexes(modelLibrary) #Re-write with data.table?
  check_bestpreds_obs(modelLibrary) #Re-write with data.table?
  check_bestpreds_preds(modelLibrary) #Re-write with data.table?

  #Extract model type (class or reg)
  type <- extractModelTypes(list_of_models)

  #Add names column
  for(i in seq_along(modelLibrary)){
    set(modelLibrary[[i]], j="modelname", value=names(modelLibrary)[[i]])
  }

  #Remove parameter columns
  keep <- Reduce(intersect, lapply(modelLibrary, names))
  for(i in seq_along(modelLibrary)){
    rem <- setdiff(names(modelLibrary[[i]]), keep)
    if(length(rem) > 0){
      for(r in rem){
        set(modelLibrary[[i]], j=r, value=NULL)
      }
    }
  }
  modelLibrary <- rbindlist(modelLibrary, fill=TRUE)

  #For classification models that produce probs, use the probs as preds
  #Otherwise, just use class predictions
  if (type=="Classification"){
    # Determine the string name for the positive class
    if (!is.factor(modelLibrary$obs) || length(levels(modelLibrary$obs)) != 2)
      stop("Response vector must be a two-level factor for classification.")
    positive <- levels(modelLibrary$obs)[getBinaryTargetLevel()]

    # Use the string name for the positive class determined above to select
    # predictions from base estimators as predictors for ensemble model
    pos <- as.numeric(modelLibrary[[positive]])
    good_pos_values <- which(is.finite(pos))
    set(modelLibrary, j="pred", value=as.numeric(modelLibrary[["pred"]]))
    set(modelLibrary, i=good_pos_values, j="pred", value=modelLibrary[good_pos_values, positive, with=FALSE])
  }

  #Reshape wide for meta-modeling
  modelLibrary <- data.table::dcast.data.table(
    modelLibrary,
    rowIndex + obs + Resample ~ modelname,
    value.var = "pred"
  )

  #Return
  return(list(obs=modelLibrary$obs, preds=as.matrix(modelLibrary[, model_names, with=FALSE]), type=type))
}

Try the caretEnsemble package in your browser

Any scripts or data that you put into this service are public.

caretEnsemble documentation built on Dec. 16, 2019, 1:33 a.m.