Nothing
#' Adjust for batch effects using an empirical Bayes framework
#'
#' ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology
#' described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for
#' batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input
#' data are assumed to be cleaned and normalized before batch effect removal.
#'
#' Note: this code is adapted directly from the \code{\link[sva]{ComBat}} algorithm featured in the `sva` package, and is not intended for standalone use.
#'
#' @param dat Genomic measure matrix (sample x dimensions probe) - for example, expression matrix
#' @param batch {Batch covariate (only one batch allowed)}
#' @param mod Model matrix for outcome of interest and other covariates besides batch
#' @param par.prior (Optional) TRUE indicates parametric adjustments will be used, FALSE indicates non-parametric adjustments will be used
#' @param prior.plots (Optional) TRUE give prior plots with black as a kernel estimate of the empirical batch effect density and red as the parametric
#' @param mean.only (Optional) FALSE If TRUE ComBat only corrects the mean of the batch effect (no scale adjustment)
#' @param ref.batch (Optional) NULL If given, will use the selected batch as a reference for batch adjustment.
#' @param BPPARAM (Optional) BiocParallelParam for parallel operation
#'
#' @return a list containing:
#' \itemize{
#' \item{\code{Ys.corrected}} batch effect corrected data.
#' \item{\code{Model}} the learned batch effect correction model.
#' }
#'
#' @importFrom graphics lines par
#' @importFrom stats cor density dnorm model.matrix pf ppoints prcomp predict
#' qgamma qnorm qqline qqnorm qqplot smooth.spline var
#' @importFrom utils read.delim
#' @importFrom genefilter rowVars
#' @import sva
#' @importFrom BiocParallel bplapply bpparam
#' @references W Evan Johnson, et al. "Adjusting batch effects in microarray expression data using empirical Bayes methods" Biostatistics (2007).
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#'
#' @noRd
cb.learn.fit_cComBat <- function (dat, batch, mod = NULL, par.prior = TRUE, prior.plots = FALSE,
mean.only = FALSE, ref.batch = NULL, BPPARAM = bpparam("SerialParam"))
{
if (length(dim(batch)) > 1) {
stop("This version of ComBat only allows one batch variable")
}
dat <- as.matrix(t(dat))
batch <- as.factor(batch)
batch.levels <- levels(batch)
zero.rows.lst <- lapply(levels(batch), function(batch_level) {
if (sum(batch == batch_level) > 1) {
return(which(apply(dat[, batch == batch_level], 1,
function(x) {
var(x) == 0
})))
}
else {
return(which(rep(1, 3) == 2))
}
})
zero.rows <- Reduce(union, zero.rows.lst)
keep.rows <- setdiff(1:nrow(dat), zero.rows)
if (length(zero.rows) > 0) {
cat(sprintf("Found %d genes with uniform expression within a single batch (all zeros); these will not be adjusted for batch.\n",
length(zero.rows)))
dat.orig <- dat
dat <- dat[keep.rows, ]
}
if (any(table(batch) == 1)) {
mean.only = TRUE
}
if (mean.only == TRUE) {
message("Using the 'mean only' version of ComBat")
}
batchmod <- model.matrix(~-1 + batch)
if (!is.null(ref.batch)) {
if (!(ref.batch %in% levels(batch))) {
stop("reference level ref.batch is not one of the levels of the batch variable")
}
message("Using batch =", ref.batch, "as a reference batch (this batch won't change)")
ref <- which(levels(as.factor(batch)) == ref.batch)
batchmod[, ref] <- 1
} else {
ref <- NULL
}
n.batch <- nlevels(batch)
batches <- list()
for (i in 1:n.batch) {
batches[[i]] <- which(batch == levels(batch)[i])
}
n.batches <- sapply(batches, length)
if (any(n.batches == 1)) {
mean.only = TRUE
message("Note: one batch has only one sample, setting mean.only=TRUE")
}
n.array <- sum(n.batches)
design <- cbind(batchmod, mod)
check <- apply(design, 2, function(x) all(x == 1))
if (!is.null(ref)) {
check[ref] <- FALSE
}
design <- as.matrix(design[, !check])
message("Adjusting for", ncol(design) - ncol(batchmod), "covariate(s) or covariate level(s)")
if (qr(design)$rank < ncol(design)) {
if (ncol(design) == (n.batch + 1)) {
stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat")
}
if (ncol(design) > (n.batch + 1)) {
if ((qr(design[, -c(1:n.batch)])$rank < ncol(design[,
-c(1:n.batch)]))) {
stop("The covariates are confounded! Please remove one or more of the covariates so the design is not confounded")
} else {
stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat")
}
}
}
NAs <- any(is.na(dat))
if (NAs) {
message(c("Found", sum(is.na(dat)), "Missing Data Values"),
sep = " ")
}
if (!NAs) {
B.hat <- solve(crossprod(design), tcrossprod(t(design),
as.matrix(dat)))
} else {
B.hat <- apply(dat, 1, Beta.NA, design)
}
if (!is.null(ref.batch)) {
grand.mean <- t(B.hat[ref, ])
} else {
grand.mean <- crossprod(n.batches/n.array, B.hat[1:n.batch,
])
}
if (!NAs) {
if (!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- ((ref.dat - t(design[batches[[ref]],
] %*% B.hat))^2) %*% rep(1/n.batches[ref], n.batches[ref])
} else {
var.pooled <- ((dat - t(design %*% B.hat))^2) %*%
rep(1/n.array, n.array)
}
} else {
if (!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- rowVars(ref.dat - t(design[batches[[ref]],
] %*% B.hat), na.rm = TRUE)
} else {
var.pooled <- rowVars(dat - t(design %*% B.hat),
na.rm = TRUE)
}
}
stand.mean <- t(grand.mean) %*% t(rep(1, n.array))
if (!is.null(design)) {
tmp <- design
tmp[, c(1:n.batch)] <- 0
stand.mean <- stand.mean + t(tmp %*% B.hat)
}
s.data <- (dat - stand.mean)/(sqrt(var.pooled) %*% t(rep(1,
n.array)))
batch.design <- design[, 1:n.batch]
if (!NAs) {
gamma.hat <- solve(crossprod(batch.design), tcrossprod(t(batch.design),
as.matrix(s.data)))
} else {
gamma.hat <- apply(s.data, 1, Beta.NA, batch.design)
}
delta.hat <- NULL
for (i in batches) {
if (mean.only == TRUE) {
delta.hat <- rbind(delta.hat, rep(1, nrow(s.data)))
} else {
delta.hat <- rbind(delta.hat, rowVars(s.data[, i],
na.rm = TRUE))
}
}
gamma.bar <- rowMeans(gamma.hat)
t2 <- rowVars(gamma.hat)
a.prior <- apply(delta.hat, 1, aprior)
b.prior <- apply(delta.hat, 1, bprior)
if (prior.plots && par.prior) {
old_pars <- par(no.readonly = TRUE)
on.exit(par(old_pars))
par(mfrow = c(2, 2))
tmp <- density(gamma.hat[1, ])
plot(tmp, type = "l", main = expression(paste("Density Plot of First Batch ",
hat(gamma))))
xx <- seq(min(tmp$x), max(tmp$x), length = 100)
lines(xx, dnorm(xx, gamma.bar[1], sqrt(t2[1])), col = 2)
qqnorm(gamma.hat[1, ], main = expression(paste("Normal Q-Q Plot of First Batch ",
hat(gamma))))
qqline(gamma.hat[1, ], col = 2)
tmp <- density(delta.hat[1, ])
xx <- seq(min(tmp$x), max(tmp$x), length = 100)
tmp1 <- list(x = xx, y = dinvgamma(xx, a.prior[1], b.prior[1]))
plot(tmp, typ = "l", ylim = c(0, max(tmp$y, tmp1$y)),
main = expression(paste("Density Plot of First Batch ",
hat(delta))))
lines(tmp1, col = 2)
invgam <- 1/qgamma(1 - ppoints(ncol(delta.hat)), a.prior[1],
b.prior[1])
qqplot(invgam, delta.hat[1, ], main = expression(paste("Inverse Gamma Q-Q Plot of First Batch ",
hat(delta))), ylab = "Sample Quantiles", xlab = "Theoretical Quantiles")
lines(c(0, max(invgam)), c(0, max(invgam)), col = 2)
}
gamma.star <- delta.star <- matrix(NA, nrow = n.batch, ncol = nrow(s.data))
if (par.prior) {
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
gamma.star <- postmean(gamma.hat[i, ], gamma.bar[i],
1, 1, t2[i])
delta.star <- rep(1, nrow(s.data))
}
else {
temp <- it.sol(s.data[, batches[[i]]], gamma.hat[i,
], delta.hat[i, ], gamma.bar[i], t2[i], a.prior[i],
b.prior[i])
gamma.star <- temp[1, ]
delta.star <- temp[2, ]
}
list(gamma.star = gamma.star, delta.star = delta.star)
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i, ] <- results[[i]]$gamma.star
delta.star[i, ] <- results[[i]]$delta.star
}
} else {
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
delta.hat[i, ] = 1
}
temp <- int.eprior(as.matrix(s.data[, batches[[i]]]),
gamma.hat[i, ], delta.hat[i, ])
list(gamma.star = temp[1, ], delta.star = temp[2,
])
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i, ] <- results[[i]]$gamma.star
delta.star[i, ] <- results[[i]]$delta.star
}
}
if (!is.null(ref.batch)) {
gamma.star[ref, ] <- 0
delta.star[ref, ] <- 1
}
bayesdata <- s.data
j <- 1
for (i in batches) {
bayesdata[, i] <- (bayesdata[, i] - t(batch.design[i,
] %*% gamma.star))/(sqrt(delta.star[j, ]) %*% t(rep(1,
n.batches[j])))
j <- j + 1
}
bayesdata <- (bayesdata * (sqrt(var.pooled) %*% t(rep(1,
n.array)))) + stand.mean
if (!is.null(ref.batch)) {
bayesdata[, batches[[ref]]] <- dat[, batches[[ref]]]
}
if (length(zero.rows) > 0) {
dat.orig[keep.rows, ] <- bayesdata
bayesdata <- dat.orig
}
return(list(Ys.corrected=t(bayesdata), Model=list(Var=var.pooled, Grand.mean=grand.mean,
B.hat=B.hat, Gamma=gamma.star, Delta=delta.star,
Levels=batch.levels)))
}
#' Density of inverse gamma distribution
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
dinvgamma <- utils::getFromNamespace("dinvgamma", "sva")
#' Monte carlo integration
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
int.eprior <- utils::getFromNamespace("int.eprior", "sva")
#' Fit LS models in presence of missing values
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
Beta.NA <- utils::getFromNamespace("Beta.NA", "sva")
#' Postmean function for hyper-priors
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
postmean <- utils::getFromNamespace("postmean", "sva")
#' Aprior function for hyper-priors
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
aprior <- utils::getFromNamespace("aprior", "sva")
#' Bprior function for hyper-priors
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
bprior <- utils::getFromNamespace("bprior", "sva")
#' Uses EM to find batch adjustments
#'
#' Direct import of code from \code{\link[sva]{sva}} package.
#' @references Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2024). sva: Surrogate Variable Analysis. R package version 3.52.0.
#' @noRd
it.sol <- utils::getFromNamespace("it.sol", "sva")
#' Adjust for batch effects using an empirical Bayes framework
#'
#' ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology
#' described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for
#' batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input
#' data are assumed to be cleaned and normalized before batch effect removal.
#'
#' Note: this code is adapted directly from the \code{\link[sva]{ComBat}} algorithm featured in the `sva` package.
#'
#' @param Ys an \code{[n, d]} matrix, for the outcome variables with \code{n} samples in \code{d} dimensions.
#' @param Ts \code{[n]} the labels of the samples, with \code{K < n} levels, as a factor variable.
#' @param Xs \code{[n, r]} the \code{r} covariates/confounding variables, for each of the \code{n} samples, as a data frame with named columns.
#' @param Model a list containing the following parameters:
#' \itemize{
#' \item{\code{Var}} the pooled variance
#' \item{\code{Grand.mean}} the overall mean of the data
#' \item{\code{B.hat}} the fit regression coefficients
#' \item{\code{Gamma}} additive batch effects
#' \item{\code{Delta}} multiplicative batch effects
#' \item{\code{Levels}} the order of levels for each batch
#' \item{\code{Covar.Mod}} the covariate model for adjustment
#' }
#' This model is output after fitting with \code{\link{cb.correct.matching_cComBat}}.
#'
#' @return an \code{[n, d]} matrix, the batch-effect corrected data.
#'
#' @importFrom graphics lines par
#' @importFrom stats cor density dnorm model.matrix pf ppoints prcomp predict
#' qgamma qnorm qqline qqnorm qqplot smooth.spline var
#' @importFrom utils read.delim
#'
#' @examples
#' library(causalBatch)
#' sim <- cb.sims.sim_linear(a=-1, n=200, err=1/8, unbalancedness=3)
#' # fit batch effect correction for first 100 samples
#' cb.fit <- cb.correct.matching_cComBat(sim$Ys[1:100,,drop=FALSE], sim$Ts[1:100],
#' data.frame(Covar=sim$Xs[1:100,,drop=FALSE]), "Covar")
#' # apply to all samples
#' cor.dat <- cb.correct.apply_cComBat(sim$Ys, sim$Ts, data.frame(Covar=sim$Xs), cb.fit$Model)
#'
#' @export
cb.correct.apply_cComBat <- function(Ys, Ts, Xs, Model) {
Ys <- t(Ys)
n.array <- dim(Ys)[2]
n.batch <- length(Model$Levels)
batches <- lapply(Model$Levels, function(batch) {
which(Ts == batch)
})
for (batch in Ts) {
if (!(batch %in% Model$Levels)) {
stop("You have out-of-sample data from batches not in the fit model.")
}
}
design.batch <- as.matrix(ohe(Ts, levels=Model$Levels)$ohe)
stand.mean <- t(Model$Grand.mean) %*% t(rep(1, n.array))
if (!is.null(Model$Covar.Mod)) {
mod.mtx <- model.matrix(as.formula(sprintf("~%s", Model$Covar.Mod)), data=Xs)
} else {
mod.mtx <- NULL
}
design.mod <- cbind(design.batch, mod.mtx)
design.mod <- design.mod[,which(!sapply(1:dim(design.mod)[2], function(j) {all(design.mod[,j] == 1)}))]
if (!is.null(design.mod)) {
tmp <- as.matrix(design.mod)
tmp[, c(1:n.batch)] <- 0
stand.mean <- stand.mean + t(tmp %*% Model$B.hat)
}
s.data <- (Ys - stand.mean)/(sqrt(Model$Var) %*% t(rep(1, n.array)))
j <- 1
bayesdata <- s.data
for (i in batches) {
bayesdata[, i] <- (bayesdata[, i] - t(design.batch[i,] %*% Model$Gamma))/(sqrt(Model$Delta[j, ]) %*% t(rep(1, length(i))))
j <- j + 1
}
bayesdata <- (bayesdata * (sqrt(Model$Var) %*% t(rep(1, n.array)))) + stand.mean
return(t(bayesdata))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.