tests/testthat/test-cptmean.R

context("cpt.mean tests")

set.seed(1) # Note: new data sets must be added at the end.
singmeandata <- c(rnorm(100,0,1),rnorm(100,10,1))
mulmeandata <- c(rnorm(100,0,1),rnorm(100,10,1),rnorm(100,20,1),rnorm(100,50,1))
nochangedata <- c(rnorm(200,0,1))

singvardata <- c(rnorm(100,10,1),rnorm(100,10,5))
mulvardata <- c(rnorm(100,20,10),rnorm(100,20,15),rnorm(100,20,20),rnorm(100,20,25))

singmeanvardata <- c(rnorm(50,0,1),rnorm(50,3,10))
mulmeanvardata <- c(rnorm(50,0,1),rnorm(50,5,3),rnorm(50,10,1),rnorm(50,3,10))
mulmeanvarexpdata <- c(rexp(50,1), rexp(50,3), rexp(50,5), rexp(50,7)) #rate values correct
mulmeanvarpoisdata <- c(rpois(50,1), rpois(50,2), rpois(50,3), rpois(50,5)) #lambda values correct?

constantdata <- rep(1, 200)
shortdata <- c(2)
negativedata <- jitter(rep(-100, 200) )

characterdata <- rep("ert", 200)

#NAdata - creates 10 random NA within singmeandata
NAdata <- singmeandata
rn <- sample(1:length(singmeandata), 10, replace=F)

for(i in rn){
  NAdata[i] <- NA
}
###################

data <- list(singmeandata,mulmeandata, nochangedata, constantdata, NAdata, shortdata, negativedata, characterdata)

# meandata <- list(singmeandata, mulmeandata, nochangedata)
# vardata <-  list(singvardata, mulvardata, nochangedata)
# meanvardata <-  list(singmeanvardata, mulmeanvardata, nochangedata)

methods <- c("AMOC", "PELT", "BinSeg") #might want to change code to convert to uppercase so less likely to break code
#Segneigh taking too long and deprecation, so leaving until very last.
#methods <- c("AMOC")

penalties <- c("None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic", "Manual", "MBIC", "CROPS")

asympenval <- list(1, 0.756, 0.234, 'return', -1, 0) #need to add character string and -1 and 0
#manpenval <- list("2+log(n)", "log(n)", "3*n", -1, "diffparam-1") #null, alt, tau*2 don't work (comes back with user defind error "your manual cannot be evaluated")
manpenval <- list("-1")

QValues <- list(3, -1, 'jamie', 200000) #data variable needs to be modified - larger than data length and over half data length
#QValues <- c(3, 5)

testStats <- c("Normal", "CUSUM")
#asym and cusum return user defined "no asymptotic penalty" && "asymptotic penalties not implemented"

class <- c(TRUE, FALSE)
param.estimates <- c(TRUE, FALSE)

minseglen <- c(-1, 10, 20000)

cropspenval = list(c(2,2.5), c(3,1), c(5,5,6), c("a", "b"), 5, "a")

t = 0 #count for number of iterations

checkManualPenalty <- function(methodLog){
  aQv <- Qv
  if(methodLog == TRUE){
    aqV <- QValues[[v]]
  }

  for(npv in 1:length(manpenval)){

    test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", penvalue=",manpenval[[npv]],", test.stat=",testStats[ts]) ,{
      #x <- cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=manpenval[[npv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe)
      # browser()
      if(is.numeric(manpenval[[npv]]) == FALSE){
        texttest = try(eval(parse(text=paste(manpenval[[npv]]))),silent=TRUE)
        if(class(texttest)=='try-error'){
                 expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=manpenval[[npv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error("Your manual penalty cannot be evaluated"))
          t = t + 1
        }
      }
            if(manpenval[[npv]] < 0){
              expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=manpenval[[npv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error('pen.value cannot be negative, please change your penalty value'))
            }
      expect_that(2+2, equals(4))

    })
    t = t+1
  }

}

checkAsymptoticPenalty <- function(methodLog){
  aQv <- Qv
  if(methodLog == TRUE){
    aqV <- QValues[[v]]
  }
  for(apv in 1:length(asympenval)){


    # browser()
    test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", pen.value=", asympenval[[apv]],", method=",methods[m],",class=",cl,", param=",pe,", penvalue=",asympenval[[apv]],", test.stat=",testStats[ts]), {
      if(testStats[ts] == "CUSUM"){
        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error())
        #edit this line to include specific error messsage
      }
      else if(is.numeric(asympenval[[apv]]) == FALSE){
        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=asympenval[[apv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error())
      }
      else if(asympenval[[apv]] <= 0 || asympenval[[apv]] > 1){
        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=asympenval[[apv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error("Asymptotic penalty values must be > 0 and <= 1"))
      }
      else if(methods[m] == "PELT" || methods[m] == "BinSeg"){
          expect_warning(cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=asympenval[[apv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe))
      }
      else{
        x <- cpt.mean(data=data[[d]], penalty=penalties[p], pen.value=asympenval[[apv]], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe)
        expect_that(2+2, equals(4))
      }
    })
    t = t+1
  }
}

checkCROPS <- function(){
  #test pen.value + its length + missing
  #test the returns of the class

  if(methods[m]!="PELT"){
    expect_that(cpt.mean(data=data[[d]], method=methods[m],penalty=penalties[p], pen.value=cropspenval[[1]], test.stat=testStats[[ts]], class=cl, param.estimates=pe), throws_error('CROPS is a valid penalty choice only if method="PELT", please change your method or your penalty.'))
    t=t+1
  }
  else{
    for(cr in 1:length(cropspenval)){

      test_that(paste0("Test #",t,"data:",d," :penalty=",penalties[p],", penval=",cropspenval[cr],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts]), {

        if(is.numeric(cropspenval[[cr]]) == FALSE ){
          expect_that(cpt.mean(data=data[[d]], method=methods[m],penalty=penalties[p], pen.value=cropspenval[[cr]], test.stat=testStats[[ts]], class=cl, param.estimates=pe), throws_error('For CROPS, pen.value must be supplied'))
        }else if(length(cropspenval[[cr]]) != 2 ){
          expect_that(cpt.mean(data=data[[d]], method=methods[m],penalty=penalties[p], pen.value=cropspenval[[cr]], test.stat=testStats[[ts]],class=cl, param.estimates=pe), throws_error('The length of pen.value must be 2'))


        }else{
          #       expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], class=cl, param.estimates=pe), throws_error('For CROPS, pen.value must be supplied'))

          if(testStats[[ts]] == "Normal" || testStats[[ts]] == "Gamma" || testStats[[ts]] == "Exponential" || testStats[[ts]] == "Poisson" ){
            x <- cpt.mean(data=data[[d]], method=methods[m],penalty=penalties[p], pen.value=cropspenval[[cr]], test.stat=testStats[[ts]], class=cl, param.estimates=pe)


            if(cl == TRUE){
              expect_that(x, is_a('cpt.range'))
            }


          }else{
            expect_that(cpt.mean(data=data[[d]], method=methods[m],penalty=penalties[p], pen.value=cropspenval[[cr]], test.stat=testStats[[ts]], class=cl, param.estimates=pe), throws_error('Only Normal, Exponential, Gamma and Poisson are valid test statistics'))
          }
        }
      })
      t=t+1

    }
    #numeric return 'For CROPS, pen.value must be supplied'
    #length return 'The length of pen.value must be 2'
  }
}

checkOtherPenalties <- function(methodLog){
  aQv <- Qv
  if(methodLog == TRUE){
    aqV <- QValues[[v]]
  }

  test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts]), {
    x <- suppressWarnings(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=aQv, test.stat=testStats[ts], class=cl, param.estimates=pe))
    #                     if(length(data=data[[d]]) <= 2){
    #                       expect_that(cpt.mean(data[[d]], penalty=penalties[p], 0, method=methods[m], QValues[[v]], testStats[ts], class=cl, pe), throws_error())
    #                     }





    ###Returns properly####
    if(cl == TRUE){
      if(methods[m] == "PELT" || methods[m] == "AMOC"){
        expect_that(x, is_a('cpt'))
      }
      else{
        expect_that(x, is_a('cpt.range'))
      }
      ######change this based on methods
      ####check some values for the class


    }else if(cl == FALSE && methodLog == TRUE){
      #  expect_that(x, is_a('list'))  #####this is now an integer in BINSEG.
    }else if(cl == FALSE && methodLog == FALSE){
      if(methods[m] == "PELT"){
        expect_that(x, is_a('integer'))
      }
      #                       }else if(methods[m] == "AMOC"){
      #                         #if(testStats[ts] == "CUSUM"){
      #                           expect_that(x, is_a('numeric'))
      #                         #}else if(testStats[ts] != "CUSUM"){
      #                         #  expect_that(x, is_a('integer'))
      #                         #}
      #                       }

    }
    t = t + 1
  })
}



for(d in 1:length(data)){
  if(is.element(NA, data[[d]])){
    test_that(paste0("Test #",t," :data=",d), {
      expect_that(cpt.mean(data=data[[d]]),throws_error("Missing value: NA is not allowed in the data as changepoint methods are only sensible for regularly spaced data."))
      t = t + 1
    })

  }else if(length(data[[d]]) < 2){
    test_that(paste0("Test #",t," :data=",d), {
      expect_that(cpt.mean(data=data[[d]]),throws_error())
      t = t + 1
    })
  }else if(is.numeric(data[[d]]) == FALSE){
    test_that(paste0("Test #",t," :data=",d), {
      expect_that(cpt.mean(data=data[[d]]),throws_error("Only numeric data allowed"))
      t = t + 1
    })
  }
  else{
    for(p in 1:length(penalties)){
        for(m in 1:length(methods)){
            for(ts in 1:length(testStats)){
          for(cl in class){
            for(pe in param.estimates){
              Qv = 5
              #                               if(t == 1112){
              #                               browser()
              #                               }
              ####data checks####
              if(penalties[p] == "CROPS"){
                checkCROPS()
              }else{
                #Q values only necessary when method is BINSEG or SEGNEIGH
                if(methods[m] == "BinSeg" || methods[m] == "SegNeigh"){
                  for(v in 1:length(QValues)){
                    test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts],"QVal=",QValues[[v]]), {

                      if(is.numeric(QValues[[v]]) == FALSE){
                        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=QValues[[v]], test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error())
                      }else if(QValues[[v]] < 0){
                        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=QValues[[v]], test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error())
                      }else if(QValues[[v]] > (length(data[[d]]))/2+1){
                        expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=QValues[[v]], test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error())
                        #specific user defined error "Q is larger than the maximum number of segments"
                      }
                      t = t + 1
                    })

                    if(penalties[p] == "Manual" ){
                      checkManualPenalty(TRUE)
                    }else if(penalties[p] == "Asymptotic"){
                        checkAsymptoticPenalty(TRUE)
                    }else if(penalties[p]=="MBIC"){
                      if(testStats[ts]=="CUSUM"||testStats[ts]=="CSS"){
                        test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts],"QVal=",Qv),expect_error(cpt.mean(data=data[[d]],penalty=penalties[p],method=methods[m],Q=aQv,test.stat=testStats[ts],class=cl,param.estimates=pe)))
                      }else{
                        checkOtherPenalties(TRUE)
                      }
                    }else{
                      checkOtherPenalties(TRUE)
                    }
                  }
                }else{
                  #Normal and Asymptotic penalty pen values
                  if(methods[m] == "PELT" && testStats[ts] == "CUSUM"){
                    test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts],"QVal=",Qv), {
                      expect_that(cpt.mean(data=data[[d]], penalty=penalties[p], method=methods[m], Q=Qv, test.stat=testStats[ts], class=cl, param.estimates=pe), throws_error("Invalid Method, must be AMOC, SegNeigh or BinSeg"))
                    })
                    t = t + 1
                  }else{
                    if(penalties[p] == "Manual" ){
                      checkManualPenalty(FALSE)
                    }else if(penalties[p] == "Asymptotic"){
                        checkAsymptoticPenalty(FALSE)
                    }else if(penalties[p]=="MBIC"){
                      if(testStats[ts]=="CUSUM"||testStats[ts]=="CSS"){
                        test_that(paste0("Test #",t," :data=", d, "penalty=",penalties[p],", method=",methods[m],",class=",cl,", param=",pe,", test.stat=",testStats[ts],"QVal=",Qv),expect_error(cpt.mean(data=data[[d]],penalty=penalties[p],method=methods[m],Q=aQv,test.stat=testStats[ts],class=cl,param.estimates=pe)))
                      }else{
                        checkOtherPenalties(FALSE)
                      }
                    }else{
                      checkOtherPenalties(FALSE)
                    }
                  }
                }
              }
              t = t+1
            }
          }
        }
      }
    }
  }
}

Try the changepoint package in your browser

Any scripts or data that you put into this service are public.

changepoint documentation built on Nov. 4, 2024, 9:06 a.m.