R/rao.test.R

Defines functions rao.test RaoTestRad print.rao.test

Documented in print.rao.test rao.test

#############################################################
#                                                           #
#       Original Splus: Ulric Lund                          #
#       E-mail: ulund@calpoly.edu                           #
#                                                           #
#############################################################

#############################################################
#                                                           #
#   rao.test function                                       #
#   Author: Claudio Agostinelli                             #
#   E-mail: claudio@unive.it                                #
#   Date: May, 31, 2006                                     #
#   Version: 0.3-1                                          #
#                                                           #
#   Copyright (C) 2006 Claudio Agostinelli                  #
#                                                           #
#############################################################

rao.test <- function(..., alpha = 0) {
    y <- list(...)
    x <- list()
    for (i in 1:length(y)) {
       if (is.data.frame(y[[i]])) {
          x <- c(x, as.list(y[[i]]))
       } else if (is.matrix(y[[i]])) {
                 for (j in 1:ncol(y[[i]])) {
                    x <- c(x, list(y[[i]][,j]))
                 }
               } else if (is.list(y[[i]])) {
                         x <- c(x, y[[i]])
               } else {
                   x <- c(x, list(y[[i]]))
               }
    }
    if (length(x)<2)
       stop("There must be at least two samples")
    for (i in 1:length(x)) {
       x[[i]] <- conversion.circular(x[[i]], units="radians", zero=0, rotation="counter", modulo="2pi")
       attr(x[[i]], "circularp") <- attr(x[[i]], "class") <- NULL
    }
    if (!any(c(0, 0.01, 0.025, 0.05, 0.1, 0.15)==alpha))
       stop("'alpha' must be one of the following values: 0, 0.01, 0.025, 0.05, 0.1, 0.15")

    # Handling missing values
    x <- lapply(x, na.omit)

    result <- RaoTestRad(x)
    result$call <- match.call()
    result$alpha <- alpha
    class(result) <- "rao.test"
    return(result)
}

RaoTestRad <- function(x) {
    n <- unlist(lapply(x, length))
    k <- length(x)
    c.data <- lapply(x, cos)
    s.data <- lapply(x, sin)
    x <- unlist(lapply(c.data, mean.default))
    y <- unlist(lapply(s.data, mean.default))
    s.co <- unlist(lapply(c.data, var.default))
    s.ss <- unlist(lapply(s.data, var.default))
    s.cs <- c(1:k)
    for(i in 1:k) {
        s.cs[i] <- var.default(c.data[[i]], s.data[[i]])
    }
    s.polar <- 1/n * (s.ss/x^2 + (y^2 * s.co)/x^4 - (2 * y * s.cs)/x^3)
    tan <- y/x
    H.polar <- sum(tan^2/s.polar) - (sum(tan/s.polar))^2/sum(1/s.polar)
    U <- x^2 + y^2
    s.disp <- 4/n * (x^2 * s.co + y^2 * s.ss + 2 * x * y * s.cs)
    H.disp <- sum(U^2/s.disp) - (sum(U/s.disp))^2/sum(1/s.disp)        
    result <- list()
    result$statistic <- c(H.polar, H.disp)
    result$df <- k-1
    result$p.value <- c((1 - pchisq(H.polar, k - 1)), (1 - pchisq(H.disp, k - 1)))
    return(result)
}

#############################################################
#                                                           #
#   print.rao.test function                                 #
#   Author: Claudio Agostinelli                             #
#   E-mail: claudio@unive.it                                #
#   Date: November, 19, 2003                                #
#   Version: 0.1-1                                          #
#                                                           #
#   Copyright (C) 2003 Claudio Agostinelli                  #
#                                                           #
#############################################################

print.rao.test <- function(x, digits=4, ...) {
        statistic <- x$statistic
        p.value <- x$p.value
        alpha <- x$alpha
        df <- x$df
    cat("\n")
    cat("Rao's Tests for Homogeneity", "\n")
    if(alpha == 0) {
        cat("\n")
        cat("       Test for Equality of Polar Vectors:", "\n", "\n")
        cat("Test Statistic =", round(statistic[1], digits=digits), "\n")
        cat("Degrees of Freedom =", df, "\n")
        cat("P-value of test =", round(p.value[1], digits=digits), "\n", "\n")
        cat("       Test for Equality of Dispersions:", "\n", "\n")
        cat("Test Statistic =", round(statistic[2], digits=digits), "\n")
        cat("Degrees of Freedom =", df, "\n")
        cat("P-value of test =", round(p.value[2], digits=digits), "\n", "\n")
    } else {
        cat("\n")
        cat("       Test for Equality of Polar Vectors:", "\n", "\n")
        cat("Test Statistic =", round(statistic[1], digits=digits), "\n")
        cat("Degrees of Freedom =", df, "\n")
        cat("Level", alpha, "critical value =", round(qchisq(1 - alpha, df), digits=digits), "\n")
        if (statistic[1] > qchisq(1 - alpha, df)) {
            cat("Reject null hypothesis of equal polar vectors", "\n", "\n")
        } else { 
                    cat("Do not reject null hypothesis of equal polar vectors", "\n", "\n")
                }
        cat("       Test for Equality of Dispersions:", "\n", "\n")
        cat("Test Statistic =", round(statistic[2], digits=digits), "\n")
        cat("Degrees of Freedom =", df, "\n")
        cat("Level", alpha, "critical value =", round(qchisq(1 - alpha, df), digits=digits), "\n")
        if (statistic[2] > qchisq(1 - alpha, df)) {
            cat("Reject null hypothesis of equal dispersions", "\n", "\n")
        } else {
                    cat("Do not reject null hypothesis of equal dispersions", "\n", "\n")
                }
    }
        invisible(x)
}

Try the circular package in your browser

Any scripts or data that you put into this service are public.

circular documentation built on May 1, 2019, 7:57 p.m.