Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dpi = 80
)
## ----setup--------------------------------------------------------------------
library(colocboost)
## ----LD-mismatch--------------------------------------------------------------
# Create a simulated dataset with LD mismatch
data("Sumstat_5traits")
data("Ind_5traits")
LD <- get_cormat(Ind_5traits$X[[1]])
# Change sign of Z-score for 1% of variants for each trait by including mismatched LD
set.seed(123)
miss_prop <- 0.005
sumstat <- lapply(Sumstat_5traits$sumstat, function(ss){
p <- nrow(ss)
pos_miss <- sample(1:p, ceiling(miss_prop * p))
ss$z[pos_miss] <- -ss$z[pos_miss]
return(ss)
})
## ----LD-mismatch-runcode------------------------------------------------------
res <- colocboost(sumstat = sumstat, LD = LD)
res$cos_details$cos$cos_index
## ----LD-mismatch-mpc_0--------------------------------------------------------
res$cos_details$cos_outcomes_npc
## ----LD-mismatch-one-iter-----------------------------------------------------
# Perform only 1 iteration of gradient boosting with LD matrix
res_mismatch <- colocboost(sumstat = sumstat, LD = LD, M = 1)
## ----LD-free------------------------------------------------------------------
res_free <- colocboost(sumstat = sumstat)
## ----hyprcoloc-compatible-----------------------------------------------------
# Loading the Dataset
data(Ind_5traits)
X <- Ind_5traits$X
Y <- Ind_5traits$Y
# Coverting to HyPrColoc compatible format
effect_est <- effect_se <- effect_n <- c()
for (i in 1:length(X)){
x <- X[[i]]
y <- Y[[i]]
effect_n[i] <- length(y)
output <- susieR::univariate_regression(X = x, y = y)
effect_est <- cbind(effect_est, output$beta)
effect_se <- cbind(effect_se, output$sebeta)
}
colnames(effect_est) <- colnames(effect_se) <- c("Y1", "Y2", "Y3", "Y4", "Y5")
rownames(effect_est) <- rownames(effect_se) <- colnames(X[[1]])
# Run colocboost
res <- colocboost(effect_est = effect_est, effect_se = effect_se, effect_n = effect_n)
# Identified CoS
res$cos_details$cos$cos_index
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.