Description Usage Arguments Details Value Author(s) References See Also Examples
Distribution function and density function for the conditional Gaussian mixture without discrete component.
1 2 | pcondgaussmixt(params, m, y, trunc = TRUE)
dcondgaussmixt(params,m,y,log=FALSE,trunc=TRUE)
|
params |
|
m |
Number of mixture components. |
y |
Vector of n dependent variables. |
log |
logical, if TRUE, probabilities p are given as log(p). |
trunc |
logical, if TRUE (default), the hybrid Pareto density is truncated below zero. |
params
can be computed by applying condgaussmixt.fwd
on the
explanatory variables x of dimension d x n associated with y
.
Distribution function evaluated at n points for
pcondgaussmixt
and density function for dcondgaussmixt
.
Julie Carreau
Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions, 20, IEEE Transactions on Neural Networks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # generate train data
ntrain <- 200
xtrain <- runif(ntrain)
ytrain <- rfrechet(ntrain,loc = 3*xtrain+1,scale =
0.5*xtrain+0.001,shape=xtrain+1)
plot(xtrain,ytrain,pch=22) # plot train data
qgen <- qfrechet(0.99,loc = 3*xtrain+1,scale = 0.5*xtrain+0.001,shape=xtrain+1)
points(xtrain,qgen,pch="*",col="orange")
h <- 4 # number of hidden units
m <- 2 # number of components
# initialize a conditional mixture with Gaussian components and a dirac at zero
thetainit <- condgaussmixt.init(1,h,m,ytrain)
# compute mixture parameters
params.mixt <- condgaussmixt.fwd(thetainit,h,m,t(xtrain))
cdf <- pcondgaussmixt(params.mixt,m,ytrain) # compute CDF
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.