Description Usage Arguments Details Value Author(s) References See Also Examples
The negative log-likelihood is computed from mixture parameters rather than from neural network parameters. The mixture parameters are obtained from the neural network for given explanatory variable values.
1 2 3 4 | condhparetomixt.dirac.negloglike(params, m, y)
condlognormixt.dirac.negloglike(params,m,y)
condgaussmixt.dirac.negloglike(params,m,y)
condbergamixt.negloglike(params,y)
|
params |
p x n matrix of mixture parameters where n is the number
of examples and p = (4 |
m |
Number of components in the mixture. |
y |
Vector of n dependent variables. |
params
can be computed from the forward functions on the
explanatory variables x of dimension d x n associated with y
:
condhparetomixt.dirac.fwd
, condgaussmixt.dirac.fwd
(which
can be used for conditional mixtures with Log-Normal components) and
condbergamixt.fwd
Vector of length n corresponding to the negative log-likelihood evaluated on each example.
Julie Carreau
Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions, 20, IEEE Transactions on Neural Networks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # generate train data with a mass at zero
ntrain <- 200
xtrain <- runif(ntrain,0,2*pi)
alpha.train <- sin(2*xtrain)/2+1/2
data.train <- rep(0,ntrain)
for (i in 1:ntrain){
if (sample(c(0,1),1,prob=c(1-alpha.train[i],alpha.train[i]))){
# rainy day, sample from a Frechet
data.train[i] <-rfrechet(1,loc=3*sin(2*xtrain[i])+4,scale=1/(1+exp(-(xtrain[i]-1))),
shape=(1+exp(-(xtrain[i]/5-2))))
}
}
plot(xtrain,data.train,pch=20)
h <- 4 # number of hidden units
m <- 2 # number of components
# initialize a conditional mixture with hybrid Pareto components and a
# dirac at zero
thetainit <- condhparetomixt.dirac.init(1,h,m,data.train)
# compute mixture parameters
params.mixt <- condhparetomixt.dirac.fwd(thetainit,h,m,t(xtrain))
# compute negative log-likelihood
nll <- condhparetomixt.dirac.negloglike(params.mixt, m, data.train)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.