Description Usage Arguments Value Author(s) References See Also Examples
Negative log-likelihood and gradient (hpareto.negloglike
) and MLE of a hybrid Pareto
distribution parameters (hpareto.fit
). hpareto.fit
applies
the optimizer nlm
to minimize the negative log-likelihood based on
some starting values for the hybrid Pareto parameters.
1 2 | hpareto.negloglike(params, x)
hpareto.fit(params, x, ...)
|
params |
vector of length 3 of hybrid Pareto parameters c(xi, mu, sigma) |
x |
a vector of length n of observations assumed to be sampled from a hybrid Pareto distribution |
... |
optional arguments for |
hpareto.negloglike
returns a single value (the negative log-likelihood for
given parameters and sample) and a vector, the gradient, which is passed as an attribute,
while hpareto.fit
returns a vector of three parameters, the MLE
of the parameters of the hybrid Pareto distribution
Julie Carreau
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Model for Asymmetric Fat-tailed Data: the Univariate Case, 12, Extremes
hpareto.mme
, dhpareto
,phpareto
and rhpareto
1 2 3 4 | r <- rhpareto(500,0.2,trunc=FALSE)
params.init <- hpareto.mme(r)
hpareto.negloglike(params.init,r)
hpareto.fit(params.init,r)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.