Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the junction point alpha, the GPD scale parameter beta and the normalization factor gamma of the hybrid Pareto distributions.
1 2 3 | hpareto.alpha(xi, mu = 0, sigma = 1)
hpareto.beta(xi, sigma = 1)
hpareto.gamma(xi, mu = 0, sigma = 1, trunc = T)
|
xi |
Tail index parameter of the hybrid Pareto distribution. |
mu |
Location parameter of the hybrid Pareto distribution. |
sigma |
Scale parameter of the hybrid Pareto distribution. |
trunc |
Binary variable : if TRUE, the density of the hybrid Pareto is truncated below zero |
Let z = (1+xi)^2/(2 pi) and W be the Lambert W function implemented in
lambertw
. Then :
alpha = mu + sigma * sqrt(W(z)), beta = sigma * |1 + xi| / sqrt(W(z))
and gamma is the integral from 0 (is trunc is true, -infinity otherwise)
to alpha.
Computation of the auxillary parameters alpha, beta and gamma.
Julie Carreau
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Model for Asymmetric Fat-tailed Data: the Univariate Case, 12, Extremes
dhpareto
,phpareto
and rhpareto
1 2 3 | hpareto.alpha(0.1,0,1)
hpareto.beta(0.1,1)
hpareto.gamma(0.1,0,1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.