Description Usage Arguments Details Value Author(s) References See Also Examples
Quantile computation for conditional mixtures requires to solve numerically F(y)=p where F is the distribution function of the conditional mixture and p is a probability level.
1 2 3 4 5 6 7 8 9 10 | condhparetomixt.quant(theta, h, m, x, p, a, b, trunc = TRUE)
condhparetomixt.dirac.quant(theta,h,m,x,p,a,b)
condhparetomixt.dirac.condquant(theta,h,m,x,p,a,b)
condgaussmixt.quant(theta,h,m,x,p,a,b,trunc=TRUE)
condgaussmixt.dirac.quant(theta,h,m,x,p,a,b)
condgaussmixt.dirac.condquant(theta,h,m,x,p,a,b)
condlognormixt.quant(theta,h,m,x,p,a,b)
condlognormixt.dirac.quant(theta,h,m,x,p,a,b)
condlognormixt.dirac.condquant(theta,h,m,x,p,a,b)
condbergamixt.quant(theta,h,x,p)
|
theta |
Vector of neural network parameters |
h |
Number of hidden units |
m |
Number of components |
x |
Matrix of explanatory (independent) variables of dimension d x n, d is the number of variables and n is the number of examples (patterns) |
p |
Probability level in [0,1] |
a |
Approximate lower bound on quantile value. |
b |
Approximate upper bound on quantile value. |
trunc |
Logical variable, if true, density is truncated below zero and re-weighted to make sure it integrates to one. |
condhparetomixt
indicates a mixture with hybrid Pareto
components,
condgaussmixt
for Gaussian components,
condlognormixt
for Log-Normal components,
condbergam
for a Bernoulli-Gamma two component mixture,
dirac
indicates that a discrete dirac component is included in
the mixture
condquant
applies for mixtures with a dirac component at zero :
quantiles are computed given that the variable is strictly positive,
that is the quantile is computed for the continuous part of the mixture
only : P(Y <= y | Y >0, X)
Computed quantiles are stored in a matrix whose rows correspond to the probability levels and whose columns correspond to the number of examples n.
Julie Carreau
Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions, 20, IEEE Transactions on Neural Networks
condmixt.train
,condmixt.nll
, condmixt.init
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # generate train data
ntrain <- 200
xtrain <- runif(ntrain)
ytrain <- rfrechet(ntrain,loc = 3*xtrain+1,scale =
0.5*xtrain+0.001,shape=xtrain+2)
plot(xtrain,ytrain,pch=22) # plot train data
qgen <- qfrechet(0.99,loc = 3*xtrain+1,scale = 0.5*xtrain+0.001,shape=xtrain+2)
points(xtrain,qgen,pch="*",col="orange")
# generate test data
ntest <- 200
xtest <- runif(ntest)
ytest <- rfrechet(ntest,loc = 3*xtest+1,scale =
0.5*xtest+0.001,shape=xtest+2)
h <- 2 # number of hidden units
m <- 4 # number of components
# train a mixture with hybrid Pareto components
thetaopt <- condhparetomixt.train(h,m,t(xtrain),ytrain, nstart=2,iterlim=100)
qmod <- condhparetomixt.quant(thetaopt,h,m,t(xtest),0.99,0,10,trunc=TRUE)
points(xtest,qmod,pch="o",col="blue")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.