Description Usage Arguments Details Value Author(s) References See Also Examples
Distribution function for the conditional hybrid Pareto mixture with and without discrete component at zero and density function for the conditional hybrid Pareto mixture without discrete component.
1 2 3 | pcondhparetomixt(params, m, y, trunc = TRUE)
pcondhparetomixt.dirac(params,m,y)
dcondhparetomixt(params,m,y,log=FALSE,trunc=TRUE)
|
params |
|
m |
Number of mixture components. |
y |
Vector of n dependent variables. |
log |
logical, if TRUE, probabilities p are given as log(p). |
trunc |
logical, if TRUE (default), the hybrid Pareto density is truncated below zero. A mixture with a Dirac component at zero is always truncated below zero. |
params
can be computed from the forward functions on the
explanatory variables x of dimension d x n associated with y
:
condhparetomixt.fwd
and condhparetomixt.dirac.fwd
Distribution function evaluated at n points for
pcondhparetomixt
and pcondhparetomixt.dirac
and density
function for dcondhparetomixt
.
Julie Carreau
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions, 20, IEEE Transactions on Neural Networks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # generate train data with a mass at zero
ntrain <- 200
xtrain <- runif(ntrain,0,2*pi)
alpha.train <- sin(2*xtrain)/2+1/2
data.train <- rep(0,ntrain)
for (i in 1:ntrain){
if (sample(c(0,1),1,prob=c(1-alpha.train[i],alpha.train[i]))){
# rainy day, sample from a Frechet
data.train[i] <-rfrechet(1,loc=3*sin(2*xtrain[i])+4,scale=1/(1+exp(-(xtrain[i]-1))),
shape=(1+exp(-(xtrain[i]/5-2))))
}
}
plot(xtrain,data.train,pch=20)
h <- 4 # number of hidden units
m <- 2 # number of components
# initialize a conditional mixture with hybrid Pareto components and a dirac at zero
thetainit <- condhparetomixt.dirac.init(1,h,m,data.train)
# compute mixture parameters on test data
params.mixt <- condhparetomixt.dirac.fwd(thetainit,h,m,t(xtrain))
cdf <- pcondhparetomixt.dirac(params.mixt,m,data.train) # compute CDF on test data
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.