Description Usage Arguments Details Value Author(s) References See Also Examples
A forward pass means that given explanatory variables x
, the
neural network computes the corresponding values of the mixture
parameters.
1 2 3 4 5 | condhparetomixt.fwd(theta, h, m, x)
condhparetomixt.dirac.fwd(theta, h, m, x)
condgaussmixt.fwd(theta, h, m, x)
condgaussmixt.dirac.fwd(theta, h, m, x)
condbergamixt.fwd(theta,h,x)
|
theta |
Vector of neural network parameters |
h |
Number of hidden units |
m |
Number of components |
x |
Matrix of explanatory (independent) variables of dimension d x n, d is the number of variables and n is the number of examples (patterns) |
condhparetomixt
indicates a mixture with hybrid Pareto
components,
condgaussmixt
for Gaussian components,
condbergam
for a Bernoulli-Gamma two component mixture,
dirac
indicates that a discrete dirac component is included in
the mixture
The forward pass for Log-Normal conditional mixture is the same one as
for Gaussian conditional mixture. Therefore, condgaussmixt.fwd
can be
used for the forward pass of a conditional mixture with Log-Normal components.
A matrix of mixture parameters corresponding to the values in x
:
- for condhparetomixt.fwd
, each component requires four
parameters (pi, xi, mu, sigma) and the parameter matrix has dimensions
m
x 4 x n
- for condhparetomixt.dirac.fwd
, there is an additional
parameter for the probability of the dirac at zero so that the mixture
parameters are stored in a (4m
+1) x n matrix
- for condgaussmixt.fwd
, each component requires three
parameters (pi, mu, sigma) and the parameter matrix has dimensions
m
x 3 x n
- for condgaussmixt.dirac.fwd
, there is an additional
parameter for the probability of the dirac at zero so that the mixture
parameters are stored in a (3m
+1) x n matrix
- for condbergamixt.fwd
, there are three parameters, the
probability of the dirac at zero and two parameters for the Gamma distribution
Julie Carreau
Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford
Carreau J. and Vrac, M. (2011) Stochastic Downscaling of Precipitation with Neural Network Conditional Mixture Models, 47, Water Resources Research
Williams, M.P. (1998) Modelling Seasonality and Trends in Daily Rainfall Data, 10, Advances in Neural Information and Processing Systems
condmixt
condmixt.init
, condmixt.nll
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n <- 200
x <- runif(n) # x is a random uniform variate
# y depends on x through the parameters of the Frechet distribution
y <- rfrechet(n,loc = 3*x+1,scale = 0.5*x+0.001,shape=x+1)
plot(x,y,pch=22)
# 0.99 quantile of the generative distribution
qgen <- qfrechet(0.99,loc = 3*x+1,scale = 0.5*x+0.001,shape=x+1)
points(x,qgen,pch="*",col="orange")
h <- 2 # number of hidden units
m <- 4 # number of components
# initialize a conditional mixture with hybrid Pareto components
thetainit <- condhparetomixt.init(1,h,m,y)
params.mixt <- condhparetomixt.fwd(thetainit,h,m,t(x)) # compute mixture parameters
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.