Description Usage Arguments Value Author(s) References See Also Examples
Negative log-likelihood and gradient (hparetomixt.negloglike
),
MLE of a hybrid Pareto distribution parameters
(hparetomixt.fit
) and out-of-sample negative log-likelihood
estimation for a given number of components with nfold cross-validation
(hparetomixt.cvtrain
).
hparetomixt.fit
applies the optimizer nlm
to minimize the
negative log-likelihood based on some starting values for the hybrid
Pareto parameters.
1 2 3 | hparetomixt.negloglike(params, x)
hparetomixt.fit(params, x, ...)
hparetomixt.cvtrain(m, x, nfold=5, nstart=1, ...)
|
params |
matrix of dimension 4 by m, where m is the number of components, each column of the matrix contains the mixture parameters of one component (pi, xi, mu, sigma) |
x |
a vector of length n of observations assumed to be sampled from a mixture of hybrid Paretos |
m |
number of mixture components |
nfold |
number of fold for cross-validation estimate, default is 5 |
nstart |
number of re-starts for the optimizer |
... |
optional arguments for |
hparetomixt.negloglike
returns a single value (the negative log-likelihood for
given parameters and sample) and a vector, the gradient, which is passed as an attribute,
while hparetomixt.fit
returns a 4 by m matrix of MLE for the
hybrid Pareto mixture parameters and hparetomixt.cvtrain
returns a cross-validation estimate of the out-of-sample negative
log-likelihood for a selected number of components
Julie Carreau
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Model for Asymmetric Fat-tailed Data: the Univariate Case, 12, Extremes
hparetomixt.init
, hparetomixt.negloglike.tailpen
1 2 3 4 5 | r <- rfrechet(500,loc=5,scale=5,shape=5)
m <- 2
param.init <- hparetomixt.init(m,r)
hparetomixt.negloglike(param.init,r)
hparetomixt.fit(param.init,r)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.