Description Usage Arguments Details Value Author(s) References See Also Examples
Neural network weights are randomly initialized uniformly over the range [-0.9/sqrt(k),0.9/sqrt(k)] where k is the number of inputs to the neuron. This ensures that the hidden units will not be saturated and that training should proceed properly. In addition, if the dependent data Y is provided, the biases will be initialized according to the initial parameters of an unconditional mixture computed on the dependent data.
1 2 3 4 5 6 7 | condhparetomixt.init(d, h, m, y = NULL)
condhparetomixt.dirac.init(d, h, m, y = NULL)
condgaussmixt.init(d,h,m,y=NULL)
condgaussmixt.dirac.init(d,h,m,y=NULL)
condlognormixt.init(d,h,m,y=NULL)
condlognormixt.dirac.init(d,h,m,y=NULL)
condbergamixt.init(d,h,y=NULL)
|
d |
dimension of input x to neural network |
h |
number of hidden unit |
m |
number of components |
y |
optional, dependent one-dimensional data |
If the argument y
is provided, an unconditional mixture with the
same type of components will be initialized on y
. These initial
unconditional parameters are then used to give more appropriate initial
values to the biases of the neural network.
A vector of neural network parameters for the given number of hidden units and number of components and specific conditional mixture formulation : hybrid Pareto components (condhparetomixt.init), hybrid Pareto components + discrete dirac component at zero (condhparetomixt.dirac.init), Gaussian components (condgaussmixt.init), Gaussian components + discrete dirac component at zero (condgaussmixt.dirac.init), Log-Normal components (condlognormixt.init), Log-Normal components + discrete dirac component at zero (condlognormixt.dirac.init) and the Bernoulli-Gamma two-component mixture (condbergamixt.init).
Julie Carreau
Carreau, J. and Bengio, Y. (2009), A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions, 20, IEEE Transactions on Neural Networks
Nabney, I. (2002) NetLab : Algorithms for Pattern Recognition, Springer
Williams, M.P. (1998) Modelling Seasonality and Trends in Daily Rainfall Data, 10, Advances in Neural Information and Processing Systems
hparetomixt.init
, gaussmixt.init
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | n <- 200
x <- runif(n) # x is a random uniform variate
# y depends on x through the parameters of the Frechet distribution
y <- rfrechet(n,loc = 3*x+1,scale = 0.5*x+0.001,shape=x+1)
plot(x,y,pch=22)
# 0.99 quantile of the generative distribution
qgen <- qfrechet(0.99,loc = 3*x+1,scale = 0.5*x+0.001,shape=x+1)
points(x,qgen,pch="*",col="orange")
h <- 2 # number of hidden units
m <- 4 # number of components
# initialize a conditional mixture with hybrid Pareto components
thetainit <- condhparetomixt.init(1,h,m,y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.