Nothing
skip_on_cran()
# load libraries
library(survey)
library(laeken)
# return test context
context("svyisq output survey.design and svyrep.design")
### test 1: test if funtion works on unweighted objects
# load data
data("api")
# set up convey design
expect_warning(dstrat1 <-
convey_prep(svydesign(id = ~ 1, data = apistrat)))
# perform tests
test_that("svyisq works on unweighted designs", {
expect_false(is.na (coef(
svyisq(
~ api00,
design = dstrat1 ,
alpha = .2 ,
deff = TRUE
)
)))
expect_false(is.na (SE(
svyisq(
~ api00,
design = dstrat1 ,
alpha = .2 ,
deff = TRUE
)
)))
})
### test 2: income data from eusilc --- data.frame-backed design object
# collect and format data
data(eusilc)
names(eusilc) <- tolower(names(eusilc))
# set up survey design objects
des_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = eusilc
)
des_eusilc_rep <-
as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50)
# prepare for convey
des_eusilc <- convey_prep(des_eusilc)
des_eusilc_rep <- convey_prep(des_eusilc_rep)
# filter positive incomes
des_eusilc <- subset( des_eusilc , eqincome > 0 )
des_eusilc_rep <- subset( des_eusilc_rep , eqincome > 0 )
# calculate estimates
a1 <- svyisq( ~ eqincome , des_eusilc , alpha = .2 , deff = TRUE , influence = TRUE , linearized = TRUE )
a2 <-
svyby( ~ eqincome ,
~ hsize,
des_eusilc,
svyisq ,
alpha = .2 ,
deff = TRUE)
b1 <-
svyisq( ~ eqincome , des_eusilc_rep , alpha = .2 , deff = TRUE)
b2 <-
svyby( ~ eqincome ,
~ hsize,
des_eusilc_rep,
svyisq ,
alpha = .2 ,
deff = TRUE)
# calculate auxilliary tests statistics
cv_diff1 <- abs(cv(a1) - cv(b1))
se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE)
# perform tests
test_that("output svyisq" , {
expect_is(coef(a1) , "numeric")
expect_is(coef(a2) , "numeric")
expect_is(coef(b1) , "numeric")
expect_is(coef(b2) , "numeric")
expect_equal(coef(a1) , coef(b1))
expect_equal(coef(a2) , coef(b2))
# expect_lte( cv_diff1 , coef(a1) * 0.20 ) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it
expect_lte(se_diff2 , max(coef(a2)) * 0.20) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it
expect_is(SE(a1) , "matrix")
expect_is(SE(a2) , "numeric")
expect_is(SE(b1) , "numeric")
expect_is(SE(b2) , "numeric")
expect_lte(confint(a1)[1] , coef(a1))
expect_gte(confint(a1)[2] , coef(a1))
expect_lte(confint(b1)[, 1] , coef(b1))
expect_gte(confint(b1)[2] , coef(b1))
expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2)))
expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2)))
})
### test 2: income data from eusilc --- database-backed design object
# perform tests
test_that("database svyisq", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set-up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# database-backed design
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
# filter positive incomes
dbd_eusilc <- subset ( dbd_eusilc , eqincome > 0 )
# calculate estimates
c1 <- svyisq( ~ eqincome , dbd_eusilc , alpha = .2 , deff = TRUE , influence = TRUE , linearized = TRUE )
c2 <-
svyby(
~ eqincome ,
~ hsize ,
dbd_eusilc ,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
c3 <-
svyby(
~ eqincome ,
~ hsize ,
des_eusilc ,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
# remove table and close connection to database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# peform tests
expect_equal(coef(a1) , coef(c1))
expect_equal(coef(a2) , coef(c2))
expect_equal(SE(a1) , SE(c1))
expect_equal(SE(a2) , SE(c2))
expect_equal(deff(a1) , deff(c1))
expect_equal(deff(a2) , deff(c2))
expect_warning(expect_equal(vcov(a2) , vcov(c2)))
expect_warning(expect_equal(diag(vcov(c2)) , diag(vcov(c3))))
})
### test 3: compare subsetted objects to svyby objects
# calculate estimates
sub_des <-
svyisq(
~ eqincome ,
design = subset(des_eusilc , hsize == 1) ,
alpha = .2 ,
deff = TRUE , influence = TRUE , linearized = TRUE
)
sby_des <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
sub_rep <-
svyisq(
~ eqincome ,
design = subset(des_eusilc_rep , hsize == 1) ,
alpha = .2 ,
deff = TRUE , influence = TRUE , linearized = TRUE
)
sby_rep <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc_rep,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
# perform tests
test_that("subsets equal svyby", {
# domain vs svyby: coefficients must be equal
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des))[1])
expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep))[1])
# domain vs svyby: SEs must be equal
expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des))[1])
expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep))[1])
# domain vs svyby: DEffs must be equal
expect_equal(as.numeric(deff(sub_des)) , as.numeric(deff(sby_des))[1])
expect_equal(as.numeric(deff(sub_rep)) , as.numeric(deff(sby_rep))[1])
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients should match across svydesign
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep))[1])
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients of variation should be within five percent
cv_diff <- abs(cv(sub_des) - cv(sby_rep)[1])
expect_lte(cv_diff , .5)
})
### test 4: compare subsetted objects to svyby objects
# compare database-backed designs to non-database-backed designs
test_that("dbi subsets equal non-dbi subsets", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# create database-backed design (with survey design information)
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# create a hacky database-backed svrepdesign object
# mirroring des_eusilc_rep
dbd_eusilc_rep <-
svrepdesign(
weights = ~ rb050,
repweights = attr(des_eusilc_rep , "full_design")$repweights ,
scale = attr(des_eusilc_rep , "full_design")$scale ,
rscales = attr(des_eusilc_rep , "full_design")$rscales ,
type = "bootstrap" ,
data = "eusilc" ,
dbtype = "SQLite" ,
dbname = dbfile ,
combined.weights = FALSE
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep)
# prepare for convey
dbd_eusilc <- subset( dbd_eusilc , eqincome > 0 )
dbd_eusilc_rep <- subset( dbd_eusilc_rep , eqincome > 0 )
# calculate estimates
sub_dbd <-
svyisq(
~ eqincome ,
design = subset(des_eusilc , hsize == 1) ,
alpha = .2 ,
deff = TRUE ,
influence = TRUE , linearized = TRUE
)
sby_dbd <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
sub_dbr <-
svyisq(
~ eqincome ,
design = subset(des_eusilc_rep , hsize == 1) ,
alpha = .2 ,
deff = TRUE ,
influence = TRUE , linearized = TRUE
)
sby_dbr <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc_rep,
FUN = svyisq ,
alpha = .2 ,
deff = TRUE
)
# remove table and disconnect from database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# perform tests
expect_equal(coef(sub_des) , coef(sub_dbd))
expect_equal(coef(sub_rep) , coef(sub_dbr))
expect_equal(SE(sub_des) , SE(sub_dbd))
expect_equal(SE(sub_rep) , SE(sub_dbr))
expect_equal(deff(sub_des) , deff(sub_dbd))
expect_equal(deff(sub_rep) , deff(sub_dbr))
# compare database-backed subsetted objects to database-backed svyby objects
# dbi subsets equal dbi svyby
expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd))[1])
expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr))[1])
expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd))[1])
expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr))[1])
expect_equal(as.numeric(deff(sub_dbd)) , as.numeric(deff(sby_dbd))[1])
expect_equal(as.numeric(deff(sub_dbr)) , as.numeric(deff(sby_dbr))[1])
expect_warning(expect_equal(vcov(sby_des) , vcov(sby_dbd)))
expect_warning(expect_equal(vcov(sby_rep) , vcov(sby_dbr)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.