Nothing
skip_on_cran()
# load libraries
library(survey)
library(laeken)
# library( vardpoor )
# return test context
context("svyqsr output survey.design and svyrep.design")
### test 1: test if funtion works on unweighted objects
# load data
data("api")
# set up convey design
expect_warning(dstrat1 <-
convey_prep(svydesign(id = ~ 1, data = apistrat)))
# perform tests
test_that("svyqsr works on unweighted designs", {
expect_false(is.na (coef(svyqsr(~ api00, design = dstrat1))))
expect_false(is.na (SE(svyqsr(~ api00, design = dstrat1))))
})
### test 2: income data from eusilc --- data.frame-backed design object
# collect and format data
data(eusilc)
names(eusilc) <- tolower(names(eusilc))
# set up survey design objects
des_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = eusilc
)
des_eusilc_rep <-
as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50)
# prepare for convey
des_eusilc <- convey_prep(des_eusilc)
des_eusilc_rep <- convey_prep(des_eusilc_rep)
# filter positive incomes
des_eusilc <- subset( des_eusilc , eqincome > 0 )
des_eusilc_rep <- subset( des_eusilc_rep , eqincome > 0 )
# calculate estimates
a1 <-
svyqsr(~ eqincome , des_eusilc , deff = TRUE , linearized = TRUE , influence = TRUE )
a2 <-
svyby(~ eqincome ,
~ hsize,
des_eusilc,
svyqsr ,
deff = TRUE ,
covmat = TRUE)
a2.nocov <-
svyby(~ eqincome ,
~ hsize,
des_eusilc,
svyqsr ,
deff = TRUE ,
covmat = FALSE)
b1 <-
svyqsr(~ eqincome ,
des_eusilc_rep ,
deff = TRUE ,
linearized = TRUE)
b2 <-
svyby(~ eqincome ,
~ hsize,
des_eusilc_rep,
svyqsr ,
deff = TRUE ,
covmat = TRUE)
b2.nocov <-
svyby(~ eqincome ,
~ hsize,
des_eusilc_rep,
svyqsr ,
deff = TRUE ,
covmat = FALSE)
# calculate auxilliary tests statistics
cv_diff1 <- abs(cv(a1) - cv(b1))
se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE)
# perform tests
test_that("output svyqsr" , {
expect_is(coef(a1) , "numeric")
expect_is(coef(a2) , "numeric")
expect_is(coef(b1) , "numeric")
expect_is(coef(b2) , "numeric")
expect_equal(coef(a1) , coef(b1))
expect_equal(coef(a2) , coef(b2))
expect_lte(cv_diff1 , coef(a1) * .20) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it
expect_lte(se_diff2 , max(coef(a2)) * .20) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it
expect_is(SE(a1) , "matrix")
expect_is(SE(a2) , "numeric")
expect_is(SE(b1) , "numeric")
expect_is(SE(b2) , "numeric")
expect_lte(confint(a1)[1] , coef(a1))
expect_gte(confint(a1)[2] , coef(a1))
expect_lte(confint(b1)[, 1] , coef(b1))
expect_gte(confint(b1)[2] , coef(b1))
expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2)))
expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2)))
# check equality of linearized variables
expect_equal(attr(a1 , "linearized") , attr(b1 , "linearized"))
expect_equal(attr(a1 , "index") , attr(b1 , "index"))
# check equality vcov diagonals
expect_warning(expect_equal(diag(vcov(a2)) , diag(vcov(a2.nocov))))
expect_warning(expect_equal(diag(vcov(b2)) , diag(vcov(b2.nocov))))
})
### test 2: income data from eusilc --- database-backed design object
# perform tests
test_that("database svyqsr", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set-up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# database-backed design
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
# filter positive incomes
dbd_eusilc <- subset( dbd_eusilc , eqincome > 0 )
# calculate estimates
c1 <-
svyqsr(~ eqincome ,
dbd_eusilc ,
deff = TRUE ,
linearized = TRUE , influence = TRUE )
c2 <-
svyby(
~ eqincome ,
~ hsize ,
dbd_eusilc ,
FUN = svyqsr ,
deff = TRUE ,
covmat = TRUE
)
# remove table and close connection to database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# peform tests
expect_equal(coef(a1) , coef(c1))
expect_equal(coef(a2) , coef(c2))
expect_equal(SE(a1) , SE(c1))
expect_equal(SE(a2) , SE(c2))
expect_equal(deff(a1) , deff(c1))
expect_equal(deff(a2) , deff(c2))
expect_equal(vcov(a1) , vcov(c1))
expect_equal(vcov(a2) , vcov(c2))
# test equality of linearized variables
expect_equal( colSums( attr(a1 , "linearized") ) , colSums( attr(c1 , "linearized") ) )
expect_equal( colSums( attr(a1 , "influence") ) , colSums( attr(c1 , "influence") ) )
expect_equal( colSums( attr(a2 , "influence") ) , colSums( attr( c2 , "influence") ) )
# expect_equal(attr(a1 , "index") , attr(c1 , "index"))
# expect_equal(attr(a2 , "index") , attr(c2 , "index"))
})
### test 3: compare subsetted objects to svyby objects
# calculate estimates
sub_des <-
svyqsr(
~ eqincome ,
design = subset(des_eusilc , hsize == 1) ,
deff = TRUE ,
linearized = TRUE
)
sby_des <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc,
FUN = svyqsr ,
deff = TRUE ,
covmat = TRUE
)
sub_rep <-
svyqsr(
~ eqincome ,
design = subset(des_eusilc_rep , hsize == 1) ,
deff = TRUE ,
linearized = TRUE
)
sby_rep <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc_rep,
FUN = svyqsr ,
deff = TRUE ,
covmat = TRUE
)
# perform tests
test_that("subsets equal svyby", {
# domain vs svyby: coefficients must be equal
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des[1, ])))
expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep[1, ])))
# domain vs svyby: SEs must be equal
expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des[1, ])))
expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep[1, ])))
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients should match across svydesign
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep[1, ])))
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients of variation should be within five percent
cv_diff <- max(abs(cv(sub_des) - cv(sby_rep)[1]))
expect_lte(cv_diff , .05)
# check equality of linearized variables
expect_equal(attr(sub_des , "linearized") , attr(sub_rep , "linearized"))
# check equality of variances
expect_equal(vcov(sub_des)[1] , vcov(sby_des)[1, 1])
expect_equal(vcov(sub_rep)[1] , vcov(sby_rep)[1, 1])
})
### test 4: compare subsetted objects to svyby objects
# compare database-backed designs to non-database-backed designs
test_that("dbi subsets equal non-dbi subsets", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# create database-backed design (with survey design information)
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# create a hacky database-backed svrepdesign object
# mirroring des_eusilc_rep
dbd_eusilc_rep <-
svrepdesign(
weights = ~ rb050,
repweights = attr(des_eusilc_rep , "full_design")$repweights ,
scale = attr(des_eusilc_rep , "full_design")$scale ,
rscales = attr(des_eusilc_rep , "full_design")$rscales ,
type = "bootstrap" ,
data = "eusilc" ,
dbtype = "SQLite" ,
dbname = dbfile ,
combined.weights = FALSE
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep)
# filter positive incomes
dbd_eusilc <- subset( dbd_eusilc , eqincome > 0 )
dbd_eusilc_rep <- subset( dbd_eusilc_rep , eqincome > 0 )
# calculate estimates
sub_dbd <-
svyqsr(
~ eqincome ,
design = subset(des_eusilc , hsize == 1) ,
deff = TRUE ,
linearized = TRUE )
sby_dbd <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc,
FUN = svyqsr ,
deff = TRUE ,
covmat = TRUE
)
sub_dbr <-
svyqsr(
~ eqincome ,
design = subset(des_eusilc_rep , hsize == 1) ,
deff = TRUE ,
linearized = TRUE
)
sby_dbr <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc_rep,
FUN = svyqsr ,
deff = TRUE ,
covmat = TRUE
)
# remove table and disconnect from database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# perform tests
expect_equal(coef(sub_des) , coef(sub_dbd))
expect_equal(coef(sub_rep) , coef(sub_dbr))
expect_equal(SE(sub_des) , SE(sub_dbd))
expect_equal(SE(sub_rep) , SE(sub_dbr))
expect_equal(deff(sub_des) , deff(sub_dbd))
expect_equal(deff(sub_rep) , deff(sub_dbr))
expect_equal(vcov(sub_des) , vcov(sub_dbd))
expect_equal(vcov(sub_rep) , vcov(sub_dbr))
# compare database-backed subsetted objects to database-backed svyby objects
# dbi subsets equal dbi svyby
expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd[1, ])))
expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr[1, ])))
expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd[1, ])))
expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr[1, ])))
expect_equal(vcov(sub_dbd) , vcov(sub_des))
expect_equal(vcov(sub_dbr) , vcov(sub_rep))
# compare equality of linearized variables
expect_equal(attr(sub_dbd , "linearized") , attr(sub_dbr , "linearized"))
expect_equal(attr(sub_dbd , "linearized") , attr(sub_des , "linearized"))
expect_equal(attr(sub_dbr , "linearized") , attr(sub_rep , "linearized"))
# compare equality of indices
expect_equal(attr(sub_dbd , "index") , attr(sub_dbr , "index"))
expect_equal(attr(sub_dbd , "index") , attr(sub_des , "index"))
expect_equal(attr(sub_dbr , "index") , attr(sub_rep , "index"))
} )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.