Nothing
skip_on_cran()
# load libraries
library(survey)
library(laeken)
# library( vardpoor )
# return test context
context("svywattsdec-relm output survey.design and svyrep.design")
### test 1: test if funtion works on unweighted objects
# load data
data("api")
# set up convey design
expect_warning(dstrat1 <-
convey_prep(svydesign(id = ~ 1, data = apistrat)))
# perform tests
test_that("svywattsdec works on unweighted designs" , {
expect_false(anyNA(coef(
svywattsdec(
~ api00,
design = dstrat1 ,
percent = .8 ,
type_thresh = "relm"
)
)))
expect_false(anyNA (SE(
svywattsdec(
~ api00,
design = dstrat1 ,
percent = .8 ,
type_thresh = "relm"
)
)))
})
### test 2: income data from eusilc --- data.frame-backed design object
# collect and format data
data(eusilc)
names(eusilc) <- tolower(names(eusilc))
# set up survey design objects
des_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = eusilc
)
des_eusilc_rep <-
as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50)
# prepare for convey
des_eusilc <- convey_prep(des_eusilc)
des_eusilc_rep <- convey_prep(des_eusilc_rep)
# filter positive
des_eusilc <- subset(des_eusilc , eqincome > 0)
des_eusilc_rep <- subset(des_eusilc_rep , eqincome > 0)
# filter positive
des_eusilc <- subset(des_eusilc , hsize < 7)
des_eusilc_rep <- subset(des_eusilc_rep , hsize < 7)
# calculate estimates
a1 <- svywattsdec(~ eqincome , des_eusilc , type_thresh = "relm")
a2 <-
svyby(~ eqincome , ~ hsize, des_eusilc , svywattsdec , type_thresh = "relm")
b1 <-
svywattsdec(~ eqincome , des_eusilc_rep , type_thresh = "relm")
b2 <-
svyby(~ eqincome , ~ hsize, des_eusilc_rep , svywattsdec , type_thresh = "relm")
d1 <- svywatts(~ eqincome , des_eusilc , type_thresh = "relm")
d2 <-
svyby(~ eqincome , ~ hsize, des_eusilc , svywatts , type_thresh = "relm")
e1 <- svywatts(~ eqincome , des_eusilc_rep , type_thresh = "relm")
e2 <-
svyby(~ eqincome , ~ hsize, des_eusilc_rep , svywatts , type_thresh = "relm")
# calculate auxilliary tests statistics
cv_diff1 <- max(abs(cv(a1) - cv(b1)))
se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE)
# perform tests
test_that("output svywattsdec" , {
expect_is(coef(a1) , "numeric")
expect_is(coef(a2) , "numeric")
expect_is(coef(b1) , "numeric")
expect_is(coef(b2) , "numeric")
expect_equal(coef(a1) , coef(b1))
expect_equal(coef(a2) , coef(b2))
# expect_lte( cv_diff1 , coef(a1) * 0.20 ) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it
expect_lte(se_diff2 , max(coef(a2)) * 0.20) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it
expect_is(SE(a1) , "numeric")
# expect_is( SE( a2 ) , "matrix" )
expect_is(SE(b1) , "numeric")
# expect_is( SE( b2 ) , "numeric" )
expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2)))
expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2)))
expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2)))
expect_equal(coef(a1)[[1]] , coef(d1)[[1]])
expect_equal(as.numeric(coef(a2)[1:2]) , as.numeric(coef(d2))[1:2])
# compare with svywatts
expect_equal(SE(a1)[[1]] , SE(d1)[[1]])
expect_equal(as.numeric(SE(a2)[, 1]) , as.numeric(SE(d2)))
expect_equal(SE(b1)[[1]] , SE(e1)[[1]])
expect_equal(as.numeric(SE(b2)[, 1]) , as.numeric(SE(e2)))
})
### test 2: income data from eusilc --- database-backed design object
# perform tests
test_that("database svywattsdec", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set-up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# database-backed design
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
# filter positive
dbd_eusilc <- subset(dbd_eusilc , eqincome > 0)
# filter cases
dbd_eusilc <- subset(dbd_eusilc , hsize < 7)
# calculate estimates
c1 <- svywattsdec(~ eqincome , dbd_eusilc , type_thresh = "relm")
c2 <-
svyby(~ eqincome , ~ hsize, dbd_eusilc , svywattsdec , type_thresh = "relm")
# remove table and close connection to database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# peform tests
expect_equal(coef(a1) , coef(c1))
expect_equal(coef(a2) , coef(c2))
expect_equal(SE(a1) , SE(c1))
expect_equal(SE(a2) , SE(c2))
})
### test 3: compare subsetted objects to svyby objects
# calculate estimates
sub_des <-
svywattsdec(~ eqincome ,
design = subset(des_eusilc , hsize == 1) ,
type_thresh = "relm")
sby_des <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc,
FUN = svywattsdec ,
type_thresh = "relm"
)
sub_rep <-
svywattsdec(~ eqincome ,
design = subset(des_eusilc_rep , hsize == 1) ,
type_thresh = "relm")
sby_rep <-
svyby(
~ eqincome,
by = ~ hsize,
design = des_eusilc_rep,
FUN = svywattsdec ,
type_thresh = "relm"
)
# perform tests
test_that("subsets equal svyby", {
# domain vs svyby: coefficients must be equal
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des[1, ])))
expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep[1, ])))
# domain vs svyby: SEs must be equal
expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des[1, ])))
expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep[1, ])))
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients should match across svydesign
expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep[1, ])))
# domain vs svyby and svydesign vs svyrepdesign:
# coefficients of variation should be within five percent
cv_diff <- max(abs(cv(sub_des) - cv(sby_rep)[1, ]))
expect_lte(cv_diff , .5)
})
### test 4: compare subsetted objects to svyby objects
# compare database-backed designs to non-database-backed designs
test_that("dbi subsets equal non-dbi subsets", {
# skip test on cran
skip_on_cran()
# load libraries
library(RSQLite)
library(DBI)
# set up database
dbfile <- tempfile()
conn <- dbConnect(RSQLite::SQLite() , dbfile)
dbWriteTable(conn , 'eusilc' , eusilc)
# create database-backed design (with survey design information)
dbd_eusilc <-
svydesign(
ids = ~ rb030 ,
strata = ~ db040 ,
weights = ~ rb050 ,
data = "eusilc",
dbname = dbfile,
dbtype = "SQLite"
)
# create a hacky database-backed svrepdesign object
# mirroring des_eusilc_rep
dbd_eusilc_rep <-
svrepdesign(
weights = ~ rb050,
repweights = attr(des_eusilc_rep , "full_design")$repweights ,
scale = attr(des_eusilc_rep , "full_design")$scale ,
rscales = attr(des_eusilc_rep , "full_design")$rscales ,
type = "bootstrap" ,
data = "eusilc" ,
dbtype = "SQLite" ,
dbname = dbfile ,
combined.weights = FALSE
)
# prepare for convey
dbd_eusilc <- convey_prep(dbd_eusilc)
dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep)
# filter positive
dbd_eusilc <- subset(dbd_eusilc , eqincome > 0)
dbd_eusilc_rep <- subset(dbd_eusilc_rep , eqincome > 0)
# filter positive
dbd_eusilc <- subset(dbd_eusilc , hsize < 7)
dbd_eusilc_rep <- subset(dbd_eusilc_rep , hsize < 7)
# calculate estimates
sub_dbd <-
svywattsdec(~ eqincome ,
design = subset(dbd_eusilc , hsize == 1) ,
type_thresh = "relm")
sby_dbd <-
svyby(
~ eqincome,
by = ~ hsize,
design = dbd_eusilc,
FUN = svywattsdec ,
type_thresh = "relm"
)
sub_dbr <-
svywattsdec(~ eqincome ,
design = subset(dbd_eusilc_rep , hsize == 1) ,
type_thresh = "relm")
sby_dbr <-
svyby(
~ eqincome,
by = ~ hsize,
design = dbd_eusilc_rep,
FUN = svywattsdec ,
type_thresh = "relm"
)
# remove table and disconnect from database
dbRemoveTable(conn , 'eusilc')
dbDisconnect(conn)
# perform tests
expect_equal(coef(sub_des) , coef(sub_dbd))
expect_equal(coef(sub_rep) , coef(sub_dbr))
expect_equal(SE(sub_des) , SE(sub_dbd))
expect_equal(SE(sub_rep) , SE(sub_dbr))
# compare database-backed subsetted objects to database-backed svyby objects
# dbi subsets equal dbi svyby
expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd[1, ])))
expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr[1, ])))
expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd[1, ])))
expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr[1, ])))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.