tests/testthat/test-extract_svyrmpg.R

context("Rmpg output survey.design and svyrep.design")

skip_on_cran()

library(laeken)
library(survey)


data(api)
dstrat1 <- convey_prep(svydesign(id =  ~ 1, data = apistrat))

expect_equal(as.numeric(coef(svyrmpg( ~ api00, design = dstrat1))),NA_real_)

test_that("svyrmpg works on unweighted designs", {
  expect_equal(SE(svyrmpg( ~ api00, design = dstrat1, percent = 1))[1],0.0172573)
})


data(eusilc)
names(eusilc) <- tolower(names(eusilc))

des_eusilc <-
  svydesign(
    ids = ~ rb030,
    strata =  ~ db040,
    weights = ~ rb050,
    data = eusilc
  )
des_eusilc <- convey_prep(des_eusilc)
des_eusilc_rep <- as.svrepdesign(des_eusilc, type = "bootstrap")
des_eusilc_rep <- convey_prep(des_eusilc_rep)

a1 <- svyrmpg( ~ eqincome, design = des_eusilc)
a2 <-
  svyby(
    ~ eqincome,
    by = ~ hsize,
    design = subset(des_eusilc , hsize < 8) ,
    FUN = svyrmpg
  )

b1 <- svyrmpg( ~ eqincome, design = des_eusilc_rep)

b2 <-
  svyby(
    ~ eqincome,
    by = ~ hsize,
    design = subset(des_eusilc_rep, hsize < 8) ,
    FUN = svyrmpg
  )

rel_error1 <- abs(SE(a1) - SE(b1)) / SE(a1)
rel_error2 <- max(abs(SE(a2) - SE(b2)) / SE(a2))

test_that("output svyrmpg", {
  expect_is(coef(a1), "numeric")
  expect_is(coef(a2), "numeric")
  expect_is(coef(b1), "numeric")
  expect_is(coef(b2), "numeric")
  expect_equal(coef(a1), coef(b1))
  expect_equal(coef(a2), coef(b2))
  #expect_lte(rel_error1,.1)
  #expect_lte(rel_error1,.2)
  expect_is(SE(a1), "matrix")
  expect_is(SE(a2), "numeric")
  expect_is(SE(b1), "numeric")
  expect_is(SE(b2), "numeric")
  expect_lte(confint(a1)[1], coef(a1))
  expect_gte(confint(a1)[2], coef(a1))
  expect_lte(confint(b1)[, 1], coef(b1))
  expect_gte(confint(b1)[2], coef(b1))
  expect_equal(sum(confint(a2)[, 1] <= coef(a2)), length(coef(a2)))
  expect_equal(sum(confint(a2)[, 2] >= coef(a2)), length(coef(a2)))
  expect_equal(sum(confint(b2)[, 1] <= coef(b2)), length(coef(b2)))
  expect_equal(sum(confint(b2)[, 2] >= coef(b2)), length(coef(b2)))
})

test_that("database svyrmpg", {
  skip_on_cran()

  # database-backed design
  library(RSQLite)
  library(DBI)
  dbfile <- tempfile()
  conn <- dbConnect(RSQLite::SQLite() , dbfile)
  dbWriteTable(conn , 'eusilc' , eusilc)

  dbd_eusilc <-
    svydesign(
      ids = ~ rb030 ,
      strata = ~ db040 ,
      weights = ~ rb050 ,
      data = "eusilc",
      dbname = dbfile,
      dbtype = "SQLite"
    )
  dbd_eusilc <- convey_prep(dbd_eusilc)

  c1 <- svyrmpg(~ eqincome , design = dbd_eusilc)
  c2 <-
    svyby(
      ~ eqincome,
      by = ~ hsize,
      design = subset(dbd_eusilc , hsize < 8) ,
      FUN = svyrmpg
    )

  dbRemoveTable(conn , 'eusilc')
  dbDisconnect(conn)

  expect_equal(coef(a1), coef(c1))
  expect_equal(coef(a2), coef(c2))
  expect_equal(SE(a1), SE(c1))
  expect_equal(SE(a2), SE(c2))

  # compare subsetted objects to svyby objects
  sub_des <-
    svyrmpg(~ eqincome , design = subset(des_eusilc , hsize == 1))
  sby_des <-
    svyby(
      ~ eqincome,
      by = ~ hsize,
      design = subset(des_eusilc , hsize < 8) ,
      FUN = svyrmpg
    )
  sub_rep <-
    svyrmpg(~ eqincome , design = subset(des_eusilc_rep , hsize == 1))
  sby_rep <-
    svyby(
      ~ eqincome,
      by = ~ hsize,
      design = subset(des_eusilc_rep , hsize < 8) ,
      FUN = svyrmpg
    )

  # subsets equal svyby
  expect_equal(as.numeric(coef(sub_des)), as.numeric(coef(sby_des))[1])
  expect_equal(as.numeric(coef(sub_rep)), as.numeric(coef(sby_rep))[1])
  expect_equal(as.numeric(SE(sub_des)), as.numeric(SE(sby_des))[1])
  expect_equal(as.numeric(SE(sub_rep)), as.numeric(SE(sby_rep))[1])

  # coefficients should match across svydesign & svrepdesign
  expect_equal(as.numeric(coef(sub_des)), as.numeric(coef(sby_rep))[1])

  # coefficients of variation should be within five percent
  cv_dif <- abs(cv(sub_des) - cv(sby_rep)[1])
  expect_lte(cv_dif, 5)





  # second run of database-backed designs #

  # database-backed design
  library(RSQLite)
  library(DBI)
  dbfile <- tempfile()
  conn <- dbConnect(RSQLite::SQLite() , dbfile)
  dbWriteTable(conn , 'eusilc' , eusilc)

  dbd_eusilc <-
    svydesign(
      ids = ~ rb030 ,
      strata = ~ db040 ,
      weights = ~ rb050 ,
      data = "eusilc",
      dbname = dbfile,
      dbtype = "SQLite"
    )

  dbd_eusilc <- convey_prep(dbd_eusilc)

  # create a hacky database-backed svrepdesign object
  # mirroring des_eusilc_rep
  dbd_eusilc_rep <-
    svrepdesign(
      weights = ~ rb050,
      repweights = des_eusilc_rep$repweights ,
      scale = des_eusilc_rep$scale ,
      rscales = des_eusilc_rep$rscales ,
      type = "bootstrap" ,
      data = "eusilc" ,
      dbtype = "SQLite" ,
      dbname = dbfile ,
      combined.weights = FALSE
    )

  dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep)

  sub_dbd <-
    svyrmpg(~ eqincome , design = subset(dbd_eusilc , hsize == 1))
  sby_dbd <-
    svyby(
      ~ eqincome,
      by = ~ hsize,
      design = subset(dbd_eusilc , hsize < 8) ,
      FUN = svyrmpg
    )
  sub_dbr <-
    svyrmpg(~ eqincome , design = subset(dbd_eusilc_rep , hsize == 1))
  sby_dbr <-
    svyby(
      ~ eqincome,
      by = ~ hsize,
      design = subset(dbd_eusilc_rep , hsize < 8) ,
      FUN = svyrmpg
    )

  dbRemoveTable(conn , 'eusilc')
  dbDisconnect(conn)


  # compare database-backed designs to non-database-backed designs
  # dbi subsets equal non-dbi subsets
  expect_equal(coef(sub_des), coef(sub_dbd))
  expect_equal(coef(sub_rep), coef(sub_dbr))
  expect_equal(SE(sub_des), SE(sub_dbd))
  expect_equal(SE(sub_rep), SE(sub_dbr))



  # compare database-backed subsetted objects to database-backed svyby objects
  # dbi subsets equal dbi svyby
  expect_equal(as.numeric(coef(sub_dbd)), as.numeric(coef(sby_dbd))[1])
  expect_equal(as.numeric(coef(sub_dbr)), as.numeric(coef(sby_dbr))[1])
  expect_equal(as.numeric(SE(sub_dbd)), as.numeric(SE(sby_dbd))[1])
  expect_equal(as.numeric(SE(sub_dbr)), as.numeric(SE(sby_dbr))[1])


})

Try the convey package in your browser

Any scripts or data that you put into this service are public.

convey documentation built on Oct. 16, 2024, 5:10 p.m.