Nothing
#######################################################
#######################################################
# EKF R-IMPLEMENTATION (FOR REPORTING)
#######################################################
#######################################################
ekf_r_prediction = function(self, private)
{
# parameters ----------------------------------------
parVec <- private$pars
# Data ----------------------------------------
n.states <- private$number.of.states
n.obs <- private$number.of.observations
n.pars <- private$number.of.pars
n.diffusions <- private$number.of.diffusions
n.inputs <- private$number.of.inputs
estimate.initial <- private$estimate.initial
# inputs
inputMat = as.matrix(private$data[private$input.names])
# observations
obsMat = as.matrix(private$data[private$obs.names])
# methods and purpose
ode.solver = private$ode.solver
k.ahead <- private$n.ahead
last.pred.index <- private$last.pred.index
# initial
stateVec = private$pred.initial.state$x0
covMat = private$pred.initial.state$p0
# time-steps
ode_timestep_size = private$ode.timestep.size
ode_timesteps = private$ode.timesteps
# 1-step covariance ODE ----------------------------------------
cov_ode_1step = function(covMat, stateVec, parVec, inputVec){
G <- g__(stateVec, parVec, inputVec)
AcovMat = dfdx__(stateVec, parVec, inputVec) %*% covMat
return(AcovMat + t(AcovMat) + G %*% t(G))
}
# forward euler ----------------------------------------
if(ode.solver==1){
ode_integrator = function(covMat, stateVec, parVec, inputVec, dinputVec, dt){
X1 = stateVec + f__(stateVec, parVec, inputVec) * dt
P1 = covMat + cov_ode_1step(covMat, stateVec, parVec, inputVec) * dt
return(list(X1,P1))
}
} else if (ode.solver==2) {
# rk4 ----------------------------------------
ode_integrator = function(covMat, stateVec, parVec, inputVec, dinputVec, dt){
# Initials
X0 = stateVec
P0 = covMat
# Classical 4th Order Runge-Kutta Method
# 1. Approx Slope at Initial Point
k1 = f__(stateVec, parVec, inputVec)
c1 = cov_ode_1step(covMat, stateVec, parVec, inputVec)
# 2. First Approx Slope at Midpoint
inputVec = inputVec + 0.5 * dinputVec
stateVec = X0 + 0.5 * dt * k1
covMat = P0 + 0.5 * dt * c1
k2 = f__(stateVec, parVec, inputVec)
c2 = cov_ode_1step(covMat, stateVec, parVec, inputVec)
# 3. Second Approx Slope at Midpoint
stateVec = X0 + 0.5 * dt * k2
covMat = P0 + 0.5 * dt * c2
k3 = f__(stateVec, parVec, inputVec)
c3 = cov_ode_1step(covMat, stateVec, parVec, inputVec)
# 4. Approx Slope at End Point
inputVec = inputVec + 0.5 * dinputVec
stateVec = X0 + dt * k3
covMat = P0 + dt * c3
k4 = f__(stateVec, parVec, inputVec)
c4 = cov_ode_1step(covMat, stateVec, parVec, inputVec)
# ODE UPDATE
X1 = X0 + (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0 * dt
P1 = P0 + (c1 + 2.0*c2 + 2.0*c3 + c4)/6.0 * dt
return(list(X1,P1))
}
} else {
# Construct input interpolators
#---------------------------------
input.interp.funs <- vector("list",length=n.inputs)
for(i in 1:length(input.interp.funs)){
input.interp.funs[[i]] <- stats::approxfun(x=inputMat[,1], y=inputMat[,i], rule=2)
}
# Construct ode fun for DeSolve
#---------------------------------
ode.fun <- function(time, stateVec_and_covMat, parVec){
inputVec <- sapply(input.interp.funs, function(f) f(time))
#
stateVec <- head(stateVec_and_covMat, n.states)
covMat <- matrix(tail(stateVec_and_covMat, -n.states),nrow=n.states)
#
G <- g__(stateVec, parVec, inputVec)
AcovMat = dfdx__(stateVec, parVec, inputVec) %*% covMat
#
dX <- f__(stateVec, parVec, inputVec)
dP <- AcovMat + t(AcovMat) + G %*% t(G)
return(list(c(dX,dP)))
}
# Construct function to call in likelihood functon
#---------------------------------
ode_integrator <- function(covMat, stateVec, parVec, inputVec, dinputVec, dt){
out <- deSolve::ode(y = c(stateVec, covMat),
times = c(inputVec[1], inputVec[1]+dt),
func = ode.fun,
parms = parVec,
method=ode.solver)[2,-1]
return(
list(head(out,n.states),
matrix(tail(out,-n.states),nrow=n.states)
)
)
}
}
# user-defined functions ---------------------------
for(i in seq_along(private$rekf.function.strings)){
eval(parse(text=private$rekf.function.strings[[i]]))
}
# new functions ----------------------------------------
# error function ----------------------------------------
erf = function(x){
y <- sqrt(2) * x
2*RTMB::pnorm(y)-1
}
####### STORAGE #######
predMats <- lapply(1:last.pred.index, function(x) matrix(NA,nrow=k.ahead+1,ncol=n.states+n.states^2))
####### Pre-Allocated Object #######
I0 <- diag(n.states)
E0 <- diag(n.obs)
####### INITIAL STATE / COVARIANCE #######
# The state/covariance is either given by user or obtained from solving the
# stationary mean, and then solving for the covariance.
# In principle these are coupled equations, but believe that root-finding
# both simultaneously can lead to likelihood blow-up.
inputVec = inputMat[1,]
if(estimate.initial){
# 1. Root-find stationary mean
opt <- stats::nlminb(numeric(n.states), function(x) sum(f__(x, parVec, inputVec)^2))
stateVec <- opt$par
# 2. Use stationary mean to solve lyapunov eq. for associated covariance
A <- dfdx__(stateVec, parVec, inputVec)
G <- g__(stateVec, parVec, inputVec)
Q <- G %*% t(G)
P <- kronecker(A,I0) + kronecker(I0,A)
X <- -solve(P, as.numeric(Q))
covMat <- matrix(X, nrow=n.states)
}
######## (PRE) DATA UPDATE ########
# This is done to include the first measurements in the provided data
# We update the state and covariance based on the "new" measurement
obsVec = obsMat[1,]
obsVec_bool = !is.na(obsVec)
if(any(obsVec_bool)){
y = obsVec[obsVec_bool]
E = E0[obsVec_bool,, drop=FALSE]
C = E %*% dhdx__(stateVec, parVec, inputVec)
e = y - E %*% h__(stateVec, parVec, inputVec)
V = E %*% hvar__matrix(stateVec, parVec, inputVec) %*% t(E)
R = C %*% covMat %*% t(C) + V
K = covMat %*% t(C) %*% solve(R)
# Update State/Cov
stateVec = stateVec + K %*% e
covMat = (I0 - K %*% C) %*% covMat %*% t(I0 - K %*% C) + K %*% V %*% t(K)
}
###### TIME LOOP #######
for(i in 1:last.pred.index){
# Start Loop
predMats[[i]][1,] <- c(stateVec, covMat)
###### K-STEP AHEAD LOOP #######
for(k in 1:k.ahead){
inputVec = inputMat[i+k-1,]
dinputVec = (inputMat[i+k,] - inputVec)/ode_timesteps[i+k-1]
# Solve moment ODEs
for(j in 1:ode_timesteps[i+k-1]){
sol = ode_integrator(covMat, stateVec, parVec, inputVec, dinputVec, ode_timestep_size[i+k-1])
stateVec = sol[[1]]
covMat = sol[[2]]
inputVec = inputVec + dinputVec
}
predMats[[i]][k+1,] <- c(stateVec, covMat)
}
stateVec <- head(predMats[[i]][2,],n.states)
covMat <- matrix(tail(predMats[[i]][2,],n.states^2),nrow=n.states)
######## DATA UPDATE ########
# We update the state and covariance based on the "new" measurement
inputVec = inputMat[i+1,]
obsVec = obsMat[i+1,]
obsVec_bool = !is.na(obsVec)
if(any(obsVec_bool)){
y = obsVec[obsVec_bool]
E = E0[obsVec_bool,, drop=FALSE] #permutation matrix with rows removed
C = E %*% dhdx__(stateVec, parVec, inputVec)
e = y - E %*% h__(stateVec, parVec, inputVec)
V = E %*% hvar__matrix(stateVec, parVec, inputVec) %*% t(E)
R = C %*% covMat %*% t(C) + V
K = covMat %*% t(C) %*% solve(R)
# Update State/Cov
stateVec = stateVec + K %*% e
covMat = (I0 - K %*% C) %*% covMat %*% t(I0 - K %*% C) + K %*% V %*% t(K)
}
# End Loop
}
###### MAIN LOOP END #######
####### STORE PREDICTION #######
# private$prediction = list(Xpred=xPred, Ppred=pPred, predMats=predMats)
private$prediction = list(predMats=predMats)
####### RETURN #######
return(invisible(self))
}
ekf_rcpp_prediction = function(self, private){
if(!any(private$ode.solver==c(1,2))){
stop("Predictions using C++ currently only support 'euler' or 'rk4' ODE solvers.")
}
# observation/input matrix
obsMat = as.matrix(private$data[private$obs.names])
inputMat = as.matrix(private$data[private$input.names])
# non-na observation matrix
numeric_is_not_na_obsMat = t(apply(obsMat, 1, FUN=function(x) as.numeric(!is.na(x))))
if(nrow(numeric_is_not_na_obsMat)==1) numeric_is_not_na_obsMat = t(numeric_is_not_na_obsMat)
# number of non-na observations
number_of_available_obs = apply(numeric_is_not_na_obsMat, 1, sum)
# predict using c++ function
# mylist <- execute_ekf_prediction(private$rcpp_function_ptr$f,
# private$rcpp_function_ptr$g,
# private$rcpp_function_ptr$dfdx,
# private$rcpp_function_ptr$h,
# private$rcpp_function_ptr$dhdx,
# private$rcpp_function_ptr$hvar,
# obsMat,
# inputMat,
# private$pars,
# private$pred.initial.state$p0,
# private$pred.initial.state$x0,
# private$ode.timestep.size,
# private$ode.timesteps,
# numeric_is_not_na_obsMat,
# number_of_available_obs,
# private$number.of.states,
# private$number.of.observations,
# private$last.pred.index,
# private$n.ahead,
# private$ode.solver)
mylist <- execute_ekf_prediction2(private$rcpp_function_ptr$f,
private$rcpp_function_ptr$g,
private$rcpp_function_ptr$dfdx,
private$rcpp_function_ptr$h,
private$rcpp_function_ptr$dhdx,
private$rcpp_function_ptr$hvar,
obsMat,
inputMat,
private$pars,
private$pred.initial.state$p0,
private$pred.initial.state$x0,
private$ode.timestep.size,
private$ode.timesteps,
numeric_is_not_na_obsMat,
number_of_available_obs,
private$number.of.states,
private$number.of.observations,
private$last.pred.index,
private$n.ahead,
private$ode.solver)
####### STORE PREDICTION #######
private$prediction = mylist
####### RETURN #######
return(invisible(self))
}
create_return_prediction = function(return.covariance, return.k.ahead, use.cpp, self, private){
# Simlify variable names
n = private$number.of.states
n.ahead = private$n.ahead
state.names = private$state.names
last.pred.index = private$last.pred.index
# Create return data.frame
df.out = data.frame(matrix(nrow=last.pred.index*(n.ahead+1), ncol=5+n+n^2))
disp_names = sprintf(rep("cor.%s.%s",n^2),rep(state.names, each=n),rep(state.names,n))
disp_names[seq.int(1,n^2,by=n+1)] = sprintf(rep("var.%s",n),state.names)
if(return.covariance){
disp_names = sprintf(rep("cov.%s.%s",n^2),rep(state.names,each=n),rep(state.names,n))
disp_names[seq.int(1,n^2,by=n+1)] = sprintf(rep("var.%s",n),state.names)
}
names(df.out) = c("i.","j.","t.i","t.j","k.ahead",state.names,disp_names)
# Fill out data.frame
ran = 0:(last.pred.index-1)
df.out["i."] = rep(ran,each=n.ahead+1)
df.out["j."] = df.out["i."] + rep(0:n.ahead,last.pred.index)
df.out["t.i"] = rep(private$data$t[ran+1],each=n.ahead+1)
df.out["t.j"] = private$data$t[df.out[,"i."]+1+rep(0:n.ahead,last.pred.index)]
df.out["k.ahead"] = rep(0:n.ahead,last.pred.index)
df.obs = df.out[c("i.","j.","t.i","t.j","k.ahead")]
df.out[, c(state.names, disp_names)] <- do.call(rbind, private$prediction$predMats)
if(!return.covariance){
diag.ids <- seq(from=1,to=n^2,by=n+1)
.seq <- seq(from=1,to=n^2,by=1)
non.diag.ids <- .seq[!(.seq %in% diag.ids)]
df.out[,disp_names[non.diag.ids]] <- t(apply(df.out, 1, function(x) as.vector(stats::cov2cor(matrix(tail(x, n^2), nrow=n)))))[,non.diag.ids]
}
##### OBSERVATION PREDICTIONS #####
# calculate observations at every time-step in predict
inputs.df = private$data[df.out[,"j."]+1,private$input.names]
named.pars.list = as.list(private$pars)
names(named.pars.list) = names(private$free.pars)
# create environment
env.list = c(
# states
as.list(df.out[state.names]),
# inputs
as.list(inputs.df),
# free parameters
named.pars.list,
# fixed parameters
lapply(private$fixed.pars, function(x) x$initial)
)
# calculate observations
obs.df.predict = as.data.frame(
lapply(private$obs.eqs.trans, function(ls){eval(ls$rhs, envir = env.list)})
)
names(obs.df.predict) = paste(private$obs.names)
# add data observation to output data.frame
obs.df.data = private$data[df.out[,"j."]+1, private$obs.names, drop=F]
names(obs.df.data) = paste(private$obs.names,".data",sep="")
df.obs = cbind(df.obs, obs.df.predict, obs.df.data)
# return only specific n.ahead
df.out = df.out[df.out[,"k.ahead"] %in% return.k.ahead,]
df.obs = df.obs[df.obs[,"k.ahead"] %in% return.k.ahead,]
list.out = list(states = df.out, observations = df.obs)
class(list.out) = c(class(list.out), "ctsmTMB.pred")
private$prediction = list.out
return(list.out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.