View source: R/pro_applicability_matrix.R
pro_applicability_matrix | R Documentation |
Checks applicability of DQ functions based on study data and metadata characteristics
pro_applicability_matrix(
study_data,
meta_data,
split_segments = FALSE,
label_col,
max_vars_per_plot = 20,
meta_data_segment,
meta_data_dataframe,
flip_mode = "noflip"
)
study_data |
data.frame the data frame that contains the measurements |
meta_data |
data.frame the data frame that contains metadata attributes of study data |
split_segments |
logical return one matrix per study segment |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
max_vars_per_plot |
integer from=0. The maximum number of variables per single plot. |
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_dataframe |
data.frame – optional: Data frame level metadata |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.
For each existing R-implementation, the function searches for necessary static metadata and returns a heatmap like matrix indicating the applicability of each data quality implementation.
In addition, the data type defined in the metadata is compared with the observed data type in the study data.
a list with:
SummaryTable
: data frame about the applicability of each indicator
function (each function in a column).
its integer values can be one of the following four
categories:
0. Non-matching datatype + Incomplete metadata,
1. Non-matching datatype + complete metadata,
2. Matching datatype + Incomplete metadata,
3. Matching datatype + complete metadata,
4. Not applicable according to data type
ApplicabilityPlot
: ggplot2 heatmap plot, graphical representation of
SummaryTable
ApplicabilityPlotList
: list of plots per (maybe artificial) segment
ReportSummaryTable
: data frame underlying ApplicabilityPlot
## Not run:
load(system.file("extdata/meta_data.RData", package = "dataquieR"), envir =
environment())
load(system.file("extdata/study_data.RData", package = "dataquieR"), envir =
environment())
appmatrix <- pro_applicability_matrix(study_data = study_data,
meta_data = meta_data,
label_col = LABEL)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.