Nothing
# RECORD_MISSMATCH_CHECKTYPE
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE_default <- "subset_u"
#' @name dataquieR.ELEMENT_MISSMATCH_CHECKTYPE
#' @title Metadata describes more than the current study data
#' @description
#' - `none`: no check will be provided about the match of variables and
#' records available in the study data and described in the metadata
#' - `exact`: There must be a 1:1 match between the study data and metadata
#' regarding data frames and segments variables and records
#' - `subset_u`: study data are a subset of metadata. All variables from the study
#' data are expected to be present in the metadata, but one or
#' more variables in the metadata are not expected to be
#' present in the study data.
#' In this case a variable present in
#' the study data but not in the metadata would produce an issue.
#' - `subset_m`: metadata are a subset of study data. All variables in the metadata
#' are expected to be present in the study data, but one or more
#' variables in the study data are not expected to be
#' present in the metadata.
#' @family options
#' @docType data
NULL
dataquieR.scale_level_heuristics_control_metriclevels_default <- 25
dataquieR.scale_level_heuristics_control_binaryrecodelimit_default <- 8
#' @name dataquieR.scale_level_heuristics_control_metriclevels
#' @title Number of levels to consider a variable metric in absence
#' of [SCALE_LEVEL]
#' @description
#' If `SCALE_LEVEL` is not specified in the `meta_data`, it will be inferred
#' using a heuristic. This option defines, for numeric variables, the maximum
#' number of distinct data values for a variable to be considered categorical,
#' not ordinal.
#' @family options
#' @docType data
NULL
#' @name dataquieR.scale_level_heuristics_control_binaryrecodelimit
#' @title Number of levels to consider a variable ordinal in absence
#' of [SCALE_LEVEL]
#' @description
#' If `SCALE_LEVEL` is not specified in the `meta_data`, it will be inferred
#' using a heuristic. This option defines, for numeric variables, the maximum
#' number of distinct data values for a variable to be considered ordinal.
#' @family options
#' @docType data
NULL
# TODO: Deprecate this block? until including dataquieR.CONDITIONS_WITH_STACKTRACE
dataquieR.ERRORS_WITH_CALLER_default <- TRUE
#' @name dataquieR.ERRORS_WITH_CALLER
#' @title Set caller for error conditions (to be deprecated)
#' @description
#' to be deprecated
#' @family options
#' @docType data
NULL
dataquieR.WARNINGS_WITH_CALLER_default <- TRUE
#' @name dataquieR.WARNINGS_WITH_CALLER
#' @title Set caller for warning conditions (to be deprecated)
#' @description
#' to be deprecated
#' @family options
#' @docType data
NULL
dataquieR.MESSAGES_WITH_CALLER_default <- FALSE
#' @name dataquieR.MESSAGES_WITH_CALLER
#' @title Set caller for message conditions (to be deprecated)
#' @description
#' to be deprecated
#' @family options
#' @docType data
NULL
dataquieR.CONDITIONS_WITH_STACKTRACE_default <- FALSE
#' @name dataquieR.CONDITIONS_WITH_STACKTRACE
#' @title Add stack-trace in condition messages (to be deprecated)
#' @description
#' to be deprecated
#' @family options
#' @docType data
NULL
dataquieR.CONDITIONS_LEVEL_TRHESHOLD_default <- 0
#' @name dataquieR.CONDITIONS_LEVEL_TRHESHOLD
#' @title Log Level
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.traceback_default <- FALSE
#' @name dataquieR.traceback
#' @title Include full trace-back in captured conditions
#' @description
#' Caveat: Needs really much memory
#' @family options
#' @docType data
NULL
dataquieR.debug_default <- FALSE
#' @name dataquieR.debug
#' @title Call [browser()] on errors
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.flip_mode_default <- "default" # flip, noflip, auto
#' @name dataquieR.flip_mode
#' @title Flip-Mode to Use for figures
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.force_item_specific_missing_codes_default <- FALSE
#' @name dataquieR.force_item_specific_missing_codes
#' @title Converting [MISSING_LIST]/[JUMP_LIST] to a [MISSING_LIST_TABLE] create on list per item
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.progress_init_fkt_default <- NULL
#' @name progress_init_fkt
#' @title [function] to call on progress initialization
#' @description
#' has one argument, `n`, reporting the number of steps in the current
#' job. needed, e.g., by packages, such as `progressr`.
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.progress_fkt_default <- NULL
#' @name dataquieR.progress_fkt_default
#' @title [function] to call on progress increase
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.progress_msg_fkt_default <- NULL
#' @name dataquieR.progress_msg_fkt_default
#' @title [function] to call on progress message update
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.grading_rulesets_default <- "grading_rulesets"
#' @name dataquieR.grading_rulesets
#' @title Name of the [data.frame] featuring [GRADING_RULESET]
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.grading_formats_default <- "grading_formats"
#' @name dataquieR.grading_formats
#' @title Name of the [data.frame] featuring a format for grading-values
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.VALUE_LABELS_htmlescaped_default <- FALSE
#' @name dataquieR.VALUE_LABELS_htmlescaped
#' @title Assume, all [VALUE_LABELS] are [HTML escaped](https://www.w3.org/International/questions/qa-escapes)
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.mark_time_points_default <- FALSE
#' @name dataquieR.acc_loess.mark_time_points
#' @title Display time-points in LOESS plots
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.plot_observations_default <- FALSE
#' @name dataquieR.acc_loess.plot_observations
#' @title Display observations in LOESS plots
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.plot_format_default <- "COMBINED"
#' @name dataquieR.acc_loess.plot_format
#' @title default for Plot-Format in [acc_loess()]
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.acc_multivariate_outlier.scale_default <- TRUE
#' @name dataquieR.acc_multivariate_outlier.scale
#' @title Apply min-max scaling in parallel coordinates figure to inspect multivariate outliers
#' @description
#' boolean, TRUE or FALSE
#' @family options
#' @docType data
NULL
dataquieR.non_disclosure_default <- FALSE
#' @name dataquieR.non_disclosure
#' @title Remove all observation-level-real-data from reports
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.lang_default <- ""
#' @name dataquieR.lang
#' @title Language-Suffix for metadata Label-Columns
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.force_label_col_default <- "auto"
#' @name dataquieR.force_label_col
#' @title Control, how the `label_col` argument is used.
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.testdebug_default <- FALSE
#' @name dataquieR.testdebug
#' @title Disable all interactively used metadata-based function argument provision
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.dontwrapresults_default <- FALSE
#' @name dataquieR.dontwrapresults
#' @title Disable automatic post-processing of `dataquieR` function results
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.guess_missing_codes_default <- FALSE
#' @name dataquieR.guess_missing_codes
#' @title Control, if `dataquieR` tries to guess missing-codes from the study data in absence of metadata
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.col_con_con_logical_default <- "#B35451"
#' @name dataquieR.col_con_con_logical
#' @title Color for logical contradictions
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.col_con_con_empirical_default <- "#B39651"
#' @name dataquieR.col_con_con_empirical
#' @title Color for empirical contradictions
#' @description
#' TODO
#' @family options
#' @docType data
NULL
dataquieR.fix_column_type_on_read_default <- FALSE
#' @name dataquieR.fix_column_type_on_read
#' @title Try to avoid fallback to string columns when reading files
#' @description
#' If a file does not feature column data types or features data types
#' cell-based, choose that type which matches the majority of the
#' sampled cells of a column for the column's data type.
#' @details
#' This may make you miss data type problems but it could fix them, so
#' [prep_get_data_frame()] works better.
#' @family options
#' @docType data
NULL
dataquieR.MAX_VALUE_LABEL_LEN_default <- 60
#' @name dataquieR.MAX_VALUE_LABEL_LEN
#' @title Maximum length for value labels
#' @description
#' value labels are restricted to this length
#' @family options
#' @docType data
NULL
# Maximum length for labels according to
# file names https://stackoverflow.com/a/265782/4242747
# and label handling in plot.ly
.MAX_LABEL_LEN <- 200L
dataquieR.MAX_LABEL_LEN_default <- 60
#' @name dataquieR.MAX_LABEL_LEN
#' @title Maximum length for variable labels [LABEL]
#' @description
#' All variable labels will be shortened to fit this maximum length.
#' Cannot be larger than 200 for technical reasons.
#' @family options
#' @docType data
NULL
dataquieR.MAX_LONG_LABEL_LEN_default <- 200
#' @name dataquieR.MAX_LONG_LABEL_LEN
#' @title Maximum length for long variable labels [LONG_LABEL]
#' @description
#' All long variable labels will be shortened to fit this maximum length.
#' Cannot be larger than 200 for technical reasons.
#' @family options
#' @docType data
NULL
dataquieR.max_group_var_levels_in_plot_default <- 20
#' @name dataquieR.max_group_var_levels_in_plot
#' @title Maximum number of levels of the grouping variable shown
#' individually in figures
#' @description
#' If there are more examiners or devices than can be shown individually,
#' they will be collapsed into "other".
#' @family options
#' @docType data
NULL
dataquieR.max_cat_resp_var_levels_in_plot_default <- 6
#' @name dataquieR.max_cat_resp_var_levels_in_plot
#' @title Maximum number of levels of the categorical response variable shown
#' individually in figures
#' @description
#' If there are more levels of a categorical response variable than can be
#' shown individually, they will be collapsed into "other".
#' @family options
#' @docType data
NULL
dataquieR.min_time_points_for_cat_resp_var_default <- 20
#' @name dataquieR.min_time_points_for_cat_resp_var
#' @title Minimum number of data points to create a time course plot for an
#' individual level of a categorical response variable
#' @description
#' If there are less observations for an individual level of a categorical
#' variable, it will not be shown in the time course plot.
#' @family options
#' @docType data
NULL
dataquieR.min_obs_per_group_var_in_plot_default <- 10
#' @name dataquieR.min_obs_per_group_var_in_plot
#' @title Minimum number of observations per grouping variable that is required
#' to include an individual level of the grouping variable in a figure
#' @description
#' Levels of the grouping variable with fewer observations than specified here
#' will be excluded from the figure.
#' @family options
#' @docType data
NULL
dataquieR.max_group_var_levels_with_violins_default <- 10
#' @name dataquieR.max_group_var_levels_with_violins
#' @title Maximum number of levels of the grouping variable shown
#' with individual histograms ('violins') in 'margins' figures
#' @description
#' If there are more examiners or devices, the figure will be reduced to
#' box-plots to save space.
#' @family options
#' @docType data
NULL
dataquieR.MULTIVARIATE_OUTLIER_CHECK_default <- "auto"
#' @name dataquieR.MULTIVARIATE_OUTLIER_CHECK
#' @title Default availability of multivariate outlier checks in reports
#' @description
#' can be
#' - `TRUE`: for `cross-item_level`-groups with `MULTIVARIATE_OUTLIER_CHECK`
#' empty, do a multivariate outlier check
#' - `FALSE`: for `cross-item_level`-groups with `MULTIVARIATE_OUTLIER_CHECK`
#' empty, don't do a multivariate outlier check
#' - `"auto"`: for `cross-item_level`-groups with `MULTIVARIATE_OUTLIER_CHECK`
#' empty, do multivariate outlier checks, if there is no entry in
#' the column [CONTRADICTION_TERM].
#' @family options
#' @docType data
NULL
dataquieR.MAHALANOBIS_THRESHOLD_default <- 0.975
#' @name dataquieR.MAHALANOBIS_THRESHOLD
#' @title Default availability of Mahalanobis based multivariate outlier checks in reports
#' @description
#' a number, see corresponding argument in [acc_mahalanobis()]
#' @family options
#' @docType data
NULL
dataquieR.acc_margins_sort_default <- TRUE
#' @name dataquieR.acc_margins_sort
#' @title Sort levels of the grouping variable in the 'margins' figures
#' @description
#' If this option is set to `TRUE`, the levels of the grouping variable in the
#' figure are sorted in descending order according to the number of
#' observations so that levels with more observations are easier to identify.
#' Otherwise, the original order of the levels is retained.
#' @family options
#' @docType data
NULL
dataquieR.acc_margins_num_default <- TRUE
#' @name dataquieR.acc_margins_num
#' @title Include number of observations for each level of the grouping variable
#' in the 'margins' figure
#' @description
#' If this option is set to `FALSE`, the figures created by `acc_margins` will
#' not include the number of observations for each level of the grouping
#' variable. This can be used to obtain clean static plots.
#' @family options
#' @docType data
NULL
dataquieR.des_summary_hard_lim_remove_default <- FALSE
#' @name dataquieR.des_summary_hard_lim_remove
#' @title Removal of hard limits from data before calculating
#' descriptive statistics.
#' @description
#' can be
#' - `TRUE`: values outside hard limits will be removed from the data
#' before calculating descriptive statistics
#' - `FALSE`: values outside hard limits will not be removed from the original
#' data
#' @family options
#' @docType data
NULL
dataquieR.GAM_for_LOESS_default <- FALSE
#' @name dataquieR.GAM_for_LOESS
#' @title Enable to switch to a general additive model instead of LOESS
#' @description
#' If this option is set to `TRUE`, time course plots will use general additive
#' models (GAM) instead of LOESS when the number of observations exceeds a
#' specified threshold. LOESS computations for large datasets have a high
#' memory consumption.
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.exclude_constant_subgroups_default <- FALSE
#' @name dataquieR.acc_loess.exclude_constant_subgroups
#' @title Exclude subgroups with constant values from LOESS figure
#' @description
#' If this option is set to `TRUE`, time course plots will only show subgroups
#' with more than one distinct value. This might improve the readability of
#' the figure.
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.min_bw_default <- 0.2
#' @name dataquieR.acc_loess.min_bw
#' @title Lower limit for the LOESS bandwidth
#' @description
#' The value should be greater than 0 and less than or equal to 1. In general,
#' increasing the bandwidth leads to a smoother trend line.
#' @family options
#' @docType data
NULL
dataquieR.acc_loess.min_proportion_default <- 0.1
#' @name dataquieR.acc_loess.min_proportion
#' @title Lower limit for the proportion of cases or controls to create a
#' smoothed time trend figure
#' @description
#' The value should be greater than 0 and less than 0.4. If the proportion of
#' cases or controls is lower than the specified value, the LOESS figure will
#' not be created for the specified binary outcome.
#' @family options
#' @docType data
NULL
dataquieR.droplevels_ReportSummaryTable_default <- FALSE
#' @name dataquieR.droplevels_ReportSummaryTable
#' @title Show also unused levels in heatmaps
#' @description
#' if `TRUE`, levels not taken will not be displayed when printing/plotting
#' heatmap tables
#' @family options
#' @docType data
NULL
dataquieR.resume_checkpoint_default <- FALSE
#' @name dataquieR.resume_checkpoint
#' @title If result already exists in a `storr` back-end, re-use it
#' @description
#' if `TRUE`, computation won't be repeated, if a result already exist in the
#' output `storr`
#' @family options
#' @docType data
NULL
dataquieR.convert_to_list_for_lapply_default <- FALSE
#' @name dataquieR.convert_to_list_for_lapply
#' @title If report uses a `storr` back-end, do not convert to base-list
#' @description
#' if `TRUE` and a report uses a `storr`-back-end, convert it to a base list,
#' i.e., copy to the RAM, even if this would likely not be really needed for
#' apply-calls
#' @family options
#' @docType data
NULL
dataquieR.resume_print_default <- FALSE
#' @name dataquieR.resume_print
#' @title If output folder is not empty, try to resume stopped `print()`
#' @description
#' if `TRUE` and a report was already partially printed with also this option
#' `TRUE`, then, a second call to `print()` will resume the printing.
#' @family options
#' @docType data
NULL
dataquieR.study_data_cache_max_default <- Inf
#' @name dataquieR.study_data_cache_max
#' @title Maximum size of cache for curated study data
#' @description
#' `dataquieR` caches all used flavors of curated study data, e.g., having
#' missing codes replaced by `NA`s, having hard limits replaced by `NA`, ...
#' For larger sets of study data this can be very RAM consuming, so you can
#' control here the maximum size for this cache. Also, this cache is distributed
#' to all compute nodes in case of parallel computation, which may be very time-
#' consuming, and, on single-node-parallelization, also, it may be even more
#' RAM-consuming then.
#' @family options
#' @family study_data_cache
#' @docType data
NULL
dataquieR.precomputeStudyData_default <- FALSE
#' @name dataquieR.precomputeStudyData
#' @title Pre-compute different curation levels of study data
#' @description
#' as described in [dataquieR.study_data_cache_max], different flavors of
#' the study data are cached. With this option, you control, if before a report
#' is computed, a frequently needed bunch of such flavors are pre-computed and
#' distributed to the compute nodes. However, this may be time- and RAM-
#' consuming, so, you can turn the pre-computation off, which will still allow
#' the individual compute nodes to maintain such a cache but then growing on
#' demand on individual nodes separately, only. If
#' [dataquieR.study_data_cache_max] cannot handle all flavors, they may still be
#' pre-computed but immediately discarded.
#' @family options
#' @family study_data_cache
#' @docType data
NULL
dataquieR.study_data_cache_quick_fill_default <- TRUE
#' @name dataquieR.study_data_cache_quick_fill
#' @title Control the pre-computation of curation levels of study data
#' @description
#' as described in [`dataquieR.precomputeStudyData`], different flavors of
#' the study data are cached. With this option, you control, if before a report
#' is computed, only frequently needed bunch of such flavors are pre-computed,
#' or simply all possible flavors. Won't have any effect, if pre-computation
#' has been turned off.
#' @family options
#' @family study_data_cache
#' @docType data
NULL
dataquieR.study_data_cache_metrics_default <- FALSE
#' @name dataquieR.study_data_cache_metrics
#' @title Collect metrics on cache usage of study data cache
#' @description
#' if `TRUE`, collect metrics on the usage of the study data cache
#' described here: [dataquieR.study_data_cache_max]. Won't work, fully,
#' if running in parallel.
#' `r lifecycle::badge("experimental")`
#' @family options
#' @family study_data_cache
#' @docType data
NULL
#' @export
#' @title Default space for some metrics during report computation
#' @description
#' `r lifecycle::badge("experimental")`
#' @family study_data_cache
dataquieR.study_data_cache_metrics_env_default <- new.env(parent = emptyenv())
#' @name dataquieR.study_data_cache_metrics_env
#' @title [environment] for storing metrics on the study data cache
#' @description
#' this is the environment, where metrics will be stored, if
#' [dataquieR.study_data_cache_metrics]-`option()` has been set `TRUE`.
#' `r lifecycle::badge("experimental")`
#' @family options
#' @family study_data_cache
#' @docType data
NULL
dataquieR.ignore_empty_vars_default <- "auto"
#' @name dataquieR.ignore_empty_vars
#' @title [character] remove variables with only empty values
#' @description
#' remove variables with only empty values (`NA`, `". "`,
#' `""` or similar) from reports. `auto` means, such variables are removed, if
#' we have more than 20% of the variables empty.
#' @family options
#' @family study_data_cache
#' @docType data
NULL # 20% are implemented at dq_report2, currently, search for ignore_empty_vars20 in this file.
if (rlang::is_installed("stringi")) {
locale_string <- stringi::stri_locale_get()
} else {
if (is.null(getOption("dataquieR.locale"))) {
packageStartupMessage(
paste("stringi is not installed to detect system default locale.",
"Falling back to en_US. You can set the option dataquieR.locale to",
"your desired ISO Code for the locale to avoid this check."))
}
locale_string <- "en_US"
}
language_code <- sub("_.*", "", locale_string)
dataquieR.locale_default <- language_code
#' @name dataquieR.locale
#' @title [character] default language for type conversion
#' @description
#' the language to use for type conversions (`en`, `de`, `fr`, `cn`, `ca`, ...)
#' only used by `util_adjust_data_type2()`, currently
#' @family options
#' @docType data
NULL # TODO: Overlaps in parts with dataquieR.lang
dataquieR.type_adjust_parallel_default <- "TRUE"
#' @name dataquieR.type_adjust_parallel
#' @title [character] try to do type adjustments in parallel
#' only, if [dq_report2()] was called with `cores = 2` or higher.
#' @family options
#' @docType data
NULL
dataquieR.old_type_adjust_default <- "FALSE"
#' @name dataquieR.old_type_adjust
#' @title [character] use the old type conversion code (slower)
#' @family options
#' @docType data
NULL
# For a benchmark, set the option to "TRUE", then run
# microbenchmark::microbenchmark(
# util_adjust_data_type(s, meta_data = m),
# util_adjust_data_type2(s, meta_data = m)
# )
dataquieR.old_factor_handling_default <- "FALSE"
#' @name dataquieR.old_factor_handling
#' @title [character] use the old handling of study data already featuring
#' factors
#' @description
#' if `study_data` comes as a data frame, it may already feature factors. if
#' a column has the `DATA_TYPE` `integer` in the meta data, the factor was
#' converted to integer using [as.integer()], which caused unexpected behavior.
#' if this option is set to `"FALSE"` (the new default), the conversion will now
#' try to apply `as.character(column_data)`, first.
#'
#' @family options
#' @docType data
NULL
dataquieR.print_block_load_factor_default <-
Sys.getenv("DATAQUIER_PRINT_BLOCK_LOAD_FACTOR", unset = "1")
#' @name dataquieR.print_block_load_factor
#' @title [numeric]
#' @description
#' multiply size of parallel compute blocks
#' by this factor. the higher it is set,
#' the less smooth progress bar grows, but
#' setting it to a huge number can really
#' speed up the rendering process by
#' approx. 10%. Either set to 1 for full
#' progress control or large (e.g., 1000000)
#' for maximum speed.
#' @family options
#' @family study_data_cache
#' @docType data
NULL
dataquieR.guess_character_default <- FALSE
#' @name dataquieR.guess_character
#' @title For metadata guessing, try to guess [DATA_TYPE] from the data values
#' @description
#' By default, the [DATA_TYPE] is derived from the R data type of the study
#' data. However, when data are imported from plain text files, it can be more
#' appropriate to examine the actual values and infer the data type based on
#' their content. This option enables that behavior: set
#' `dataquieR.guess_character` to `TRUE` to infer data types from the observed
#' values rather than relying solely on the column’s `class` in the data frame.
#' @family options
#' @docType data
NULL
dataquieR.dt_adjust_default <- "TRUE"
#' @name dataquieR.dt_adjust
#' @title [character] Adjust data types according to metadata
#' @description
#' also reports inadmissible data types. can be turned off for performance
#' reasons, if the data source is already type-safe (e.g., a database)
#' ***use with care, may cause pipelines breaking (maybe only in the final
#' rendering step), if the data type is incorrectly set for some columns.***
#'
#' @family options
#' @docType data
NULL
dataquieR.study_data_colnames_case_sensitive_default <- "TRUE"
#' @name dataquieR.study_data_colnames_case_sensitive
#' @title [character] Are column names in study data considered
#' case-sensitive for mapping
#' @description
#' if `TRUE`, `colnames(study_data)` replaced by the capitalization used in the
#' metadata using a case-insensitive matching, first.
#'
#' @family options
#' @docType data
NULL
dataquieR.lazy_plots_default <- "TRUE"
#' @name dataquieR.lazy_plots
#' @title [character] plots realized lazy
#' @description
#' if `TRUE`, plots are not realized until needed in side reports to save
#' memory.
#'
#' @family options
#' @docType data
NULL
dataquieR.lazy_plots_cache_default <- "FALSE"
#' @name dataquieR.lazy_plots_cache
#' @title [character] cache realizations
#' @description
#' if `TRUE`, realized plots are cached, may need more memory.
#'
#' @family options
#' @docType data
NULL
dataquieR.lazy_plots_gg_compatibility_default <- "TRUE"
#' @name dataquieR.lazy_plots_gg_compatibility
#' @title [character] be as compatible with `ggplot2` objects as possible
#' @description
#' if `TRUE`, plot promises are blessed in an `S7` class so they behave almost
#' like "real" `ggplot2` objects, so you normally do not need to call
#' [prep_realize_ggplot()] on them. However, this comes with a small memory
#' overhead, so, you can disable this.
#'
#' @family options
#' @docType data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.