Nothing
# Function Contents -----------------------------------------------------------
# Internal:
# logl_vec: calculates vecchia log likelihood
# sample_g_vec: conducts Metropolis Hastings sampling for nugget
# sample_theta_vec: conducts Metropolis Hastings sampling for theta
# sample_w_vec: conducts Elliptical Slice Sampling for w layer
# sample_z_vec: conducts Elliptical Slice Sampling for z layer
# Vecchia Log Likelihood-------------------------------------------------------
# Separable option is included directly, with input sep = TRUE
logl_vec <- function(out_vec, approx, g, theta, outer = TRUE, v, tau2 = FALSE,
sep = FALSE) {
n <- length(out_vec)
out_vec_ord <- out_vec[approx$ord]
U_mat <- create_U(approx, g, theta, v, sep = sep) # does either isotropic or separable
Uty <- Matrix::crossprod(U_mat, out_vec_ord)
ytUUty <- sum(Uty^2)
logdet <- sum(log(Matrix::diag(U_mat)))
if (outer) {
logl <- logdet - (n * 0.5) * log(ytUUty)
} else {
logl <- logdet - 0.5 * ytUUty
}
if (tau2) {
tau2 <- c(ytUUty) / n
} else tau2 <- NULL
return(list(logl = logl, tau2 = tau2))
}
# Sample G Vecchia ------------------------------------------------------------
# Handles both sep = FALSE and sep = TRUE
sample_g_vec <- function(y, g_t, theta, alpha, beta, l, u, ll_prev = NULL,
approx, v, sep = FALSE) {
# Propose value
g_star <- runif(1, min = l * g_t / u, max = u * g_t / l)
# Compute acceptance threshold
ru <- runif(1, min = 0, max = 1)
if (is.null(ll_prev))
ll_prev <- logl_vec(y, approx, g_t, theta, outer = TRUE, v, sep = sep)$logl
lpost_threshold <- ll_prev + dgamma(g_t - eps, alpha, beta, log = TRUE) +
log(ru) - log(g_t) + log(g_star)
ll_new <- logl_vec(y, approx, g_star, theta, outer = TRUE, v, sep = sep)$logl
# Accept or reject (lower bound of eps)
new <- ll_new + dgamma(g_star - eps, alpha, beta, log = TRUE)
if (new > lpost_threshold) {
return(list(g = g_star, ll = ll_new))
} else{
return(list(g = g_t, ll = ll_prev))
}
}
# Sample Theta Vecchia --------------------------------------------------------
sample_theta_vec <- function(y, g, theta_t, alpha, beta, l, u, outer,
ll_prev = NULL, approx, v, tau2 = FALSE) {
# Propose value
theta_star <- runif(1, min = l * theta_t / u, max = u * theta_t / l)
# Compute acceptance threshold
ru <- runif(1, min = 0, max = 1)
if (is.null(ll_prev))
ll_prev <- logl_vec(y, approx, g, theta_t, outer, v)$logl
lpost_threshold <- ll_prev + dgamma(theta_t - eps, alpha, beta, log = TRUE) +
log(ru) - log(theta_t) + log(theta_star)
ll_new <- logl_vec(y, approx, g, theta_star, outer, v, tau2 = tau2)
# Accept or reject (lower bound of eps)
new <- ll_new$logl + dgamma(theta_star - eps, alpha, beta, log = TRUE)
if (new > lpost_threshold) {
return(list(theta = theta_star, ll = ll_new$logl, tau2 = ll_new$tau2))
} else{
return(list(theta = theta_t, ll = ll_prev, tau2 = NULL))
}
}
# Sample Theta Vecchia SEPARABLE ----------------------------------------------
# Only used in one-layer GP (outer = TRUE only)
sample_theta_vec_sep <- function(y, g, theta_t, index = 1, alpha, beta, l, u,
ll_prev = NULL, approx, v, tau2 = FALSE) {
# Propose value
theta_star <- runif(1, min = l * theta_t[index] / u, max = u * theta_t[index] / l)
theta_t_updated <- theta_t
theta_t_updated[index] <- theta_star
# Compute acceptance threshold
ru <- runif(1, min = 0, max = 1)
if (is.null(ll_prev))
ll_prev <- logl_vec(y, approx, g, theta_t, outer = TRUE, v, sep = TRUE)$logl
lpost_threshold <- ll_prev + dgamma(theta_t[index] - eps, alpha, beta, log = TRUE) +
log(ru) - log(theta_t[index]) + log(theta_star)
ll_new <- logl_vec(y, approx, g, theta_t_updated, outer = TRUE, v, tau2 = tau2, sep = TRUE)
# Accept or reject (lower bound of eps)
new <- ll_new$logl + dgamma(theta_star - eps, alpha, beta, log = TRUE)
if (new > lpost_threshold) {
return(list(theta = theta_star, ll = ll_new$logl, tau2 = ll_new$tau2))
} else{
return(list(theta = theta_t[index], ll = ll_prev, tau2 = NULL))
}
}
# Elliptical Slice W Vecchia --------------------------------------------------
sample_w_vec <- function(y, w_approx, x_approx, g, theta_y, theta_w,
ll_prev = NULL, v) {
D <- ncol(w_approx$x_ord) # dimension of hidden layer
if (is.null(ll_prev))
ll_prev <- logl_vec(y, w_approx, g, theta_y, outer = TRUE, v)$logl
for (i in 1:D) { # separate sampling for each dimension of hidden layer
w_prior <- rand_mvn_vec(x_approx, theta_w[i], v)
# Initialize a and bounds on a
a <- runif(1, min = 0, max = 2 * pi)
amin <- a - 2 * pi
amax <- a
# Compute acceptance threshold - based on all dimensions of previous w
ru <- runif(1, min = 0, max = 1)
ll_threshold <- ll_prev + log(ru)
# Calculate proposed values, accept or reject, repeat if necessary
accept <- FALSE
count <- 0
w_prev <- w_approx$x_ord[w_approx$rev_ord_obs, i] # store for re-proposal
while (accept == FALSE) {
count <- count + 1
# Calculate proposed values and new likelihood
w_proposal <- w_prev * cos(a) + w_prior * sin(a)
# Incorporate proposal in vecchia approximation object
w_approx <- update_obs_in_approx(w_approx, w_proposal, i)
new_logl <- logl_vec(y, w_approx, g, theta_y, outer = TRUE, v)$logl
# Accept or reject
if (new_logl > ll_threshold) {
ll_prev <- new_logl
accept <- TRUE
} else {
# update the bounds on a and repeat
if (a < 0) {
amin <- a
} else {
amax <- a
}
a <- runif(1, amin, amax)
if (count > 100) stop('reached maximum iterations of ESS')
} # end of else statement
} # end of while loop
} # end of i for loop
return(list(w_approx = w_approx, ll = ll_prev))
}
# Elliptical Slice Z Vecchia --------------------------------------------------
sample_z_vec <- function(w, z_approx, x_approx, g, theta_w, theta_z,
ll_prev = NULL, v) {
D <- ncol(z_approx$x_ord) # dimension of hidden layer
if (is.null(ll_prev)) {
ll_prev <- 0
for (j in 1:D)
ll_prev <- ll_prev + logl_vec(w[, j], z_approx, g, theta_w[j],
outer = FALSE, v)$logl
}
for (i in 1:D) { # separate sampling for each dimension of hidden layer
z_prior <- rand_mvn_vec(x_approx, theta_z[i], v)
# Initialize a and bounds on a
a <- runif(1, min = 0, max = 2 * pi)
amin <- a - 2 * pi
amax <- a
# Compute acceptance threshold - based on all dimensions of previous w
ru <- runif(1, min = 0, max = 1)
ll_threshold <- ll_prev + log(ru)
# Calculate proposed values, accept or reject, repeat if necessary
accept <- FALSE
count <- 0
z_prev <- z_approx$x_ord[z_approx$rev_ord_obs, i] # store for re-proposal
while (accept == FALSE) {
count <- count + 1
# Calculate proposed values and new likelihood
z_proposal <- z_prev * cos(a) + z_prior * sin(a)
# Incorporate proposal in vecchia approximation object
z_approx <- update_obs_in_approx(z_approx, z_proposal, i)
new_logl <- 0
for (j in 1:D)
new_logl <- new_logl + logl_vec(w[, j], z_approx, g, theta_w[j],
outer = FALSE, v)$logl
# Accept or reject
if (new_logl > ll_threshold) {
ll_prev <- new_logl
accept <- TRUE
} else {
# update the bounds on a and repeat
if (a < 0) {
amin <- a
} else {
amax <- a
}
a <- runif(1, amin, amax)
if (count > 100) stop('reached maximum iterations of ESS')
} # end of else statement
} # end of while loop
} # end of i for loop
return(list(z_approx = z_approx, ll = ll_prev))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.