R/SDistribution_MultivariateNormal.R

# nolint start
#' @name MultivariateNormal
#' @template SDist
#' @templateVar ClassName MultivariateNormal
#' @templateVar DistName Multivariate Normal
#' @templateVar uses to generalise the Normal distribution to higher dimensions, and is commonly associated with Gaussian Processes
#' @templateVar params mean, \eqn{\mu}, and covariance matrix, \eqn{\Sigma},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x_1,...,x_k) = (2 * \pi)^{-k/2}det(\Sigma)^{-1/2}exp(-1/2(x-\mu)^T\Sigma^{-1}(x-\mu))}
#' @templateVar paramsupport \eqn{\mu \epsilon R^{k}} and \eqn{\Sigma \epsilon R^{k x k}}
#' @templateVar distsupport the Reals and only when the covariance matrix is positive-definite
#' @templateVar omittedDPQR \code{cdf} and \code{quantile}
#' @templateVar default mean = rep(0, 2), cov = c(1, 0, 0, 1)
# nolint end
#' @details
#' Sampling is performed via the Cholesky decomposition using [chol].
#'
#' Number of variables cannot be changed after construction.
#'
#' @references
#' Gentle, J.E. (2009).
#' Computational Statistics.
#' Statistics and Computing. New York: Springer. pp. 315–316.
#' doi:10.1007/978-0-387-98144-4. ISBN 978-0-387-98143-7.
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#'
#' @family continuous distributions
#' @family multivariate distributions
#'
#' @export
MultivariateNormal <- R6Class("MultivariateNormal",
  inherit = SDistribution, lock_objects = F,
  public = list(
    # Public fields
    name = "MultivariateNormal",
    short_name = "MultiNorm",
    description = "Multivariate Normal Probability Distribution.",

    # Public methods
    # initialize

    #' @description
    #' Creates a new instance of this [R6][R6::R6Class] class.
    #' Number of variables cannot be changed after construction.
    #' @param mean `(numeric())`\cr
    #' Vector of means, defined on the Reals.
    #' @param cov `(matrix()|vector())` \cr
    #' Covariance of the distribution, either given as a matrix or vector coerced to a
    #' matrix via `matrix(cov, nrow = K, byrow = FALSE)`. Must be semi-definite.
    #' @param prec `(matrix()|vector())` \cr
    #' Precision of the distribution, inverse of the covariance matrix. If supplied then `cov` is
    #' ignored. Given as a matrix or vector coerced to a
    #' matrix via `matrix(cov, nrow = K, byrow = FALSE)`. Must be semi-definite.
    initialize = function(mean = rep(0, 2), cov = c(1, 0, 0, 1),
                          prec = NULL, decorators = NULL) {
      super$initialize(
        decorators = decorators,
        support = setpower(Reals$new(), 2),
        type = setpower(Reals$new(), "n")
      )
    },

    # stats

    #' @description
    #' The arithmetic mean of a (discrete) probability distribution X is the expectation
    #' \deqn{E_X(X) = \sum p_X(x)*x}
    #' with an integration analogue for continuous distributions.
    #' @param ... Unused.
    mean = function(...) {
      mean <- self$getParameterValue("mean")
      if (checkmate::testList(mean)) {
        return(t(data.table::rbindlist(list(mean))))
      } else {
        return(mean)
      }
    },

    #' @description
    #' The mode of a probability distribution is the point at which the pdf is
    #' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
    #' maxima).
    mode = function(which = "all") {
      self$mean()
    },

    #' @description
    #' The variance of a distribution is defined by the formula
    #' \deqn{var_X = E[X^2] - E[X]^2}
    #' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
    #' covariance matrix is returned.
    #' @param ... Unused.
    variance = function(...) {
      cov <- self$getParameterValue("cov")

      if (checkmate::testList(cov)) {
        return(array(unlist(cov), dim = c(length(cov[[1]]) / 2, length(cov[[1]]) / 2, length(cov))))
      } else {
        return(cov)
      }
    },

    #' @description
    #' The entropy of a (discrete) distribution is defined by
    #' \deqn{- \sum (f_X)log(f_X)}
    #' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
    #' continuous distributions.
    #' @param ... Unused.
    entropy = function(base = 2, ...) {
      cov <- self$getParameterValue("cov")

      if (checkmate::testList(cov)) {
        n <- length(self$getParameterValue("mean")[[1]])
        return(as.numeric(sapply(
          cov,
          function(x) {
            0.5 * log(
              det(2 * pi * exp(1) * matrix(x, nrow = n)),
              base
            )
          }
        )))
      } else {
        return(0.5 * log(det(2 * pi * exp(1) * cov), base))
      }
    },

    #' @description The moment generating function is defined by
    #' \deqn{mgf_X(t) = E_X[exp(xt)]}
    #' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
    #' @param ... Unused.
    mgf = function(t, ...) {
      mean <- self$getParameterValue("mean")
      checkmate::assert(length(t) == length(mean))
      return(as.numeric(exp((mean %*% t(t(t))) +
                              (0.5 * t %*% self$getParameterValue("cov") %*% t(t(t))))))
    },

    #' @description The characteristic function is defined by
    #' \deqn{cf_X(t) = E_X[exp(xti)]}
    #' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
    #' @param ... Unused.
    cf = function(t, ...) {
      mean <- self$getParameterValue("mean")
      checkmate::assert(length(t) == length(mean))
      return(as.complex(exp((1i * mean %*% t(t(t))) +
                              (0.5 * t %*% self$getParameterValue("cov") %*% t(t(t))))))
    },

    #' @description The probability generating function is defined by
    #' \deqn{pgf_X(z) = E_X[exp(z^x)]}
    #' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
    #' @param ... Unused.
    pgf = function(z, ...) {
      return(NaN)
    },

    #' @description
    #' Returns the value of the supplied parameter.
    #' @param id `character()` \cr
    #' id of parameter support to return.
    getParameterValue = function(id, error = "warn") {
      if ("cov" %in% id) {
        return(matrix(super$getParameterValue("cov", error),
          nrow = length(super$getParameterValue("mean", error))
        ))
      } else if ("prec" %in% id) {
        return(matrix(super$getParameterValue("prec", error),
          nrow = length(super$getParameterValue("mean", error))
        ))
      } else {
        return(super$getParameterValue(id, error))
      }
    },

    # optional setParameterValue
    #' @description
    #' Sets the value(s) of the given parameter(s).
    setParameterValue = function(..., lst = list(...), error = "warn", resolveConflicts = FALSE) {# FIXME

      super$setParameterValue(lst = lst)
      mean <- self$getParameterValue("mean")
      private$.variates <- length(mean)
      invisible(self)
    }
  ),

  active = list(
    #' @field properties
    #' Returns distribution properties, including skewness type and symmetry.
    properties = function() {
      prop <- super$properties
      prop$support <- setpower(Reals$new(),
                               length(self$getParameterValue("mean")))
      prop
    }
  ),

  private = list(
    # dpqr
    .pdf = function(x, log = FALSE) {

      cov <- self$getParameterValue("cov")
      mean <- self$getParameterValue("mean")

      dmvn <- function(x, cov, mean, log) {
        K <- length(mean)

        if (checkmate::testNumeric(cov)) {
          cov <- matrix(cov, nrow = K)
        }

        if (isSymmetric.matrix(cov) & all(eigen(cov, only.values = TRUE)$values > 0)) {

          checkmate::testMatrix(x, ncols = K)
          mean <- matrix(mean, nrow = nrow(x), ncol = K, byrow = TRUE)

          if (log) {
            return(as.numeric(-((K / 2) * log(2 * pi)) - (log(det(cov)) / 2) - # nolint
              (diag((x - mean) %*% solve(cov) %*% t(x - mean)) / 2)))
          } else {
            return(as.numeric((2 * pi)^(-K / 2) * det(cov)^-0.5 * # nolint
              exp(-0.5 * diag((x - mean) %*% solve(cov) %*% t(x - mean)))))
          }

        } else {
          return(NaN)
        }
      }

      if (checkmate::testList(cov)) {
        mapply(dmvn,
          cov = cov,
          mean = mean,
          MoreArgs = list(x = x, log = log)
        )
      } else {
        dmvn(x, cov = cov, mean = mean, log = log)
      }
    },
    .rand = function(n) {

      cov <- self$getParameterValue("cov")
      mean <- self$getParameterValue("mean")

      rmvn <- function(n, cov, mean) {
        K <- length(mean)

        if (checkmate::testNumeric(cov)) {
          cov <- matrix(cov, nrow = K)
        }

        xs <- matrix(rnorm(K * n), ncol = n)

        return(data.table::data.table(t(mean + t(chol(cov)) %*% xs)))
      }

      if (checkmate::testList(cov)) {
        mapply(rmvn,
          cov = cov,
          mean = mean,
          MoreArgs = list(n = n),
          SIMPLIFY = FALSE
        )
      } else {
        rmvn(n, cov = cov, mean = mean)
      }
    },

    .variates = 2,

    # traits
    .traits = list(valueSupport = "continuous", variateForm = "multivariate"),

    .isCdf = FALSE,
    .isQuantile = FALSE
  )
)

.distr6$distributions <- rbind(
  .distr6$distributions,
  data.table::data.table(
    ShortName = "MultiNorm", ClassName = "MultivariateNormal",
    Type = "\u211D^K", ValueSupport = "continuous",
    VariateForm = "multivariate",
    Package = "-", Tags = "locscale"
  )
)

Try the distr6 package in your browser

Any scripts or data that you put into this service are public.

distr6 documentation built on March 28, 2022, 1:05 a.m.