Nothing
# nolint start
#' @name ShiftedLoglogistic
#' @template SDist
#' @templateVar ClassName ShiftedLoglogistic
#' @templateVar DistName Shifted Log-Logistic
#' @templateVar uses in survival analysis for its non-monotonic hazard as well as in economics, a generalised variant of [Loglogistic]
#' @templateVar params shape, \eqn{\beta}, scale, \eqn{\alpha}, and location, \eqn{\gamma},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\beta/\alpha)((x-\gamma)/\alpha)^{\beta-1}(1 + ((x-\gamma)/\alpha)^\beta)^{-2}}
#' @templateVar paramsupport \eqn{\alpha, \beta > 0} and \eqn{\gamma >= 0}
#' @templateVar distsupport the non-negative Reals
#' @templateVar default scale = 1, shape = 1, location = 0
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template param_ratescale
#' @template param_location
#' @template param_shape
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
ShiftedLoglogistic <- R6Class("ShiftedLoglogistic",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "ShiftedLoglogistic",
short_name = "ShiftLLogis",
description = "Shifted Loglogistic Probability Distribution.",
packages = "pracma",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(scale = NULL, shape = NULL, location = NULL,
rate = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(-1, Inf, type = "[)"),
type = Reals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
location <- unlist(self$getParameterValue("location"))
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(location + ((scale / shape) * (((pi * shape) / (sin(pi * shape))) - 1)))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
location <- unlist(self$getParameterValue("location"))
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(location + ((scale / shape) * ((((1 - shape) / (1 + shape))^shape) - 1)))
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
unlist(self$getParameterValue("location"))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi * unlist(self$getParameterValue("shape"))
return((scale^2 / shape^2) * ((2 * shapi / sin(2 * shapi)) - ((shapi / sin(shapi))^2)))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
shape <- self$getParameterValue("shape")
location <- self$getParameterValue("location")
scale <- self$getParameterValue("scale")
prop$support <- if (shape == 0) {
Reals$new()
} else if (shape < 0) {
prop$support <- Interval$new(-Inf, location - scale / shape,
type = "(]")
} else {
prop$support <- Interval$new(location - scale / shape, Inf,
type = "[)")
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
location <- self$getParameterValue("location")
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
if (checkmate::testList(location)) {
return(C_ShiftedLoglogisticPdf(x, unlist(location), unlist(shape), unlist(scale), log))
} else {
return(as.numeric(C_ShiftedLoglogisticPdf(x, location, shape, scale, log)))
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
location <- self$getParameterValue("location")
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
if (checkmate::testList(location)) {
return(C_ShiftedLoglogisticCdf(x, unlist(location), unlist(shape), unlist(scale),
lower.tail, log.p))
} else {
return(as.numeric(C_ShiftedLoglogisticCdf(x, location, shape, scale, lower.tail, log.p)))
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
location <- self$getParameterValue("location")
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
if (checkmate::testList(location)) {
return(C_ShiftedLoglogisticQuantile(p, unlist(location), unlist(shape), unlist(scale),
lower.tail, log.p))
} else {
return(as.numeric(C_ShiftedLoglogisticQuantile(p, location, shape, scale, lower.tail,
log.p)))
}
},
.rand = function(n) {
self$quantile(runif(n))
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "ShiftLLogis", ClassName = "ShiftedLoglogistic",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "-", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.