Nothing
#' Group input by rows
#'
#' @description
#' `rowwise()` allows you to compute on a data frame a row-at-a-time.
#' This is most useful when a vectorised function doesn't exist.
#'
#' Most dplyr verbs preserve row-wise grouping. The exception is [summarise()],
#' which return a [grouped_df]. You can explicitly ungroup with [ungroup()]
#' or [as_tibble()], or convert to a [grouped_df] with [group_by()].
#'
#' @section List-columns:
#' Because a rowwise has exactly one row per group it offers a small
#' convenience for working with list-columns. Normally, `summarise()` and
#' `mutate()` extract a groups worth of data with `[`. But when you index
#' a list in this way, you get back another list. When you're working with
#' a `rowwise` tibble, then dplyr will use `[[` instead of `[` to make your
#' life a little easier.
#'
#' @param data Input data frame.
#' @param ... <[`tidy-select`][dplyr_tidy_select]> Variables to be preserved
#' when calling [summarise()]. This is typically a set of variables whose
#' combination uniquely identify each row.
#'
#' **NB**: unlike `group_by()` you can not create new variables here but
#' instead you can select multiple variables with (e.g.) `everything()`.
#' @seealso [nest_by()] for a convenient way of creating rowwise data frames
#' with nested data.
#' @return A row-wise data frame with class `rowwise_df`. Note that a
#' `rowwise_df` is implicitly grouped by row, but is not a `grouped_df`.
#' @export
#' @examples
#' df <- tibble(x = runif(6), y = runif(6), z = runif(6))
#' # Compute the mean of x, y, z in each row
#' df %>% rowwise() %>% mutate(m = mean(c(x, y, z)))
#' # use c_across() to more easily select many variables
#' df %>% rowwise() %>% mutate(m = mean(c_across(x:z)))
#'
#' # Compute the minimum of x and y in each row
#' df %>% rowwise() %>% mutate(m = min(c(x, y, z)))
#' # In this case you can use an existing vectorised function:
#' df %>% mutate(m = pmin(x, y, z))
#' # Where these functions exist they'll be much faster than rowwise
#' # so be on the lookout for them.
#'
#' # rowwise() is also useful when doing simulations
#' params <- tribble(
#' ~sim, ~n, ~mean, ~sd,
#' 1, 1, 1, 1,
#' 2, 2, 2, 4,
#' 3, 3, -1, 2
#' )
#' # Here I supply variables to preserve after the computation
#' params %>%
#' rowwise(sim) %>%
#' reframe(z = rnorm(n, mean, sd))
#'
#' # If you want one row per simulation, put the results in a list()
#' params %>%
#' rowwise(sim) %>%
#' summarise(z = list(rnorm(n, mean, sd)), .groups = "keep")
rowwise <- function(data, ...) {
UseMethod("rowwise")
}
#' @export
rowwise.data.frame <- function(data, ...) {
vars <- tidyselect::eval_select(expr(c(...)), data)
rowwise_df(data, vars)
}
#' @export
rowwise.grouped_df <- function(data, ...) {
if (!missing(...)) {
bullets <- c(
"Can't re-group when creating rowwise data.",
i = "Either first `ungroup()` or call `rowwise()` without arguments."
)
abort(bullets)
}
rowwise_df(data, group_vars(data))
}
# Constructor + helper ----------------------------------------------------
rowwise_df <- function(data, group_vars) {
group_data <- as_tibble(data)[group_vars]
new_rowwise_df(data, group_data)
}
is_rowwise_df <- function(x) {
inherits(x, "rowwise_df")
}
#' @rdname new_grouped_df
#' @export
new_rowwise_df <- function(data, group_data = NULL, ..., class = character()) {
nrow <- nrow(data)
if (!is.null(group_data)) {
if (!is_tibble(group_data) || has_name(group_data, ".rows")) {
msg <- "`group_data` must be a tibble without a `.rows` column."
abort(msg)
}
group_data <- new_tibble(vec_data(group_data), nrow = nrow) # strip attributes
} else {
group_data <- new_tibble(list(), nrow = nrow)
}
group_data$.rows <- new_list_of(as.list(seq_len(nrow)), ptype = integer())
new_tibble(
data,
groups = group_data,
...,
nrow = nrow,
class = c(class, "rowwise_df")
)
}
#' @rdname new_grouped_df
#' @export
validate_rowwise_df <- function(x) {
result <- .Call(`dplyr_validate_rowwise_df`, x)
if (!is.null(result)) {
abort(result)
}
x
}
setOldClass(c("rowwise_df", "tbl_df", "tbl", "data.frame"))
# methods -----------------------------------------------------------------
#' @importFrom pillar tbl_sum
#' @export
tbl_sum.rowwise_df <- function(x, ...) {
c(
NextMethod(),
"Rowwise" = commas(group_vars(x))
)
}
#' @export
as_tibble.rowwise_df <- function(x, ...) {
new_tibble(vec_data(x), nrow = nrow(x))
}
#' @export
`[.rowwise_df` <- function(x, i, j, drop = FALSE) {
out <- NextMethod()
if (!is.data.frame(out)) {
return(out)
}
group_vars <- intersect(names(out), group_vars(x))
rowwise_df(out, group_vars)
}
#' @export
`[<-.rowwise_df` <- function(x, i, j, ..., value) {
out <- NextMethod()
group_vars <- intersect(names(out), group_vars(x))
rowwise_df(out, group_vars)
}
#' @export
`names<-.rowwise_df` <- function(x, value) {
data <- NextMethod()
group_vars <- value[match(group_vars(x), names(x))]
rowwise_df(data, group_vars)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.