R/CLUSTERING-all-cent2.R

Defines functions all_cent2 fcmdd_cent fcm_cent median_cent mean_cent sdtw_cent_cent dba_cent shape_cent .pam_cent reinit_clusters colMedians

# ==================================================================================================
# Helpers
# ==================================================================================================

# column-wise medians
#' @importFrom stats median
#'
colMedians <- function(mat) { apply(mat, 2L, stats::median) }

# Reinitialize empty clusters
reinit_clusters <- function(x, cent, cent_case, num_empty, empty_clusters, distmat) {
    # Make sure no centroid is repeated (especially in case of PAM)
    any_rep <- logical(num_empty)
    while(TRUE) {
        id_cent_extra <- sample(length(x), num_empty)
        extra_cent <- x[id_cent_extra]
        for (id_extra in 1L:num_empty) {
            any_rep[id_extra] <- any(sapply(cent, function(i_centroid) {
                identical(i_centroid, extra_cent[[id_extra]])
            }))

            if (cent_case == ".pam")
                distmat$id_cent[empty_clusters[id_extra]] <- id_cent_extra[id_extra]
        }

        if (all(!any_rep)) break
    }

    extra_cent
}

# --------------------------------------------------------------------------------------------------
# pam (different name due to exported pam_cent() that was defined later)
.pam_cent <- function(x, x_split, cent, id_changed, cl_id, ..., distmat) {
    id_x <- lapply(id_changed, function(cl_num) { which(cl_id == cl_num) })
    Map(id_x, id_changed, f = function(i_x, i_cl) {
        pam_cent(x, ids = i_x, distmat = distmat, ..., .i_cl_ = i_cl, error.check = FALSE)
    })
}

# --------------------------------------------------------------------------------------------------
# shape
shape_cent <- function(x, x_split, cent, id_changed, cl_id, ..., distmat) {
    force(x)
    # not all arguments are used, but I want them to be isolated from ellipsis
    dots <- list(...)
    dots$error.check <- FALSE
    x_split <- split_parallel(x_split)
    cent <- split_parallel(cent)
    # return
    foreach(x_split = x_split, cent = cent,
            .combine = c,
            .multicombine = TRUE,
            .packages = "dtwclust",
            .export = c("quoted_call")) %op% {
                Map(x_split, cent, f = function(x, cent) {
                    quoted_call(shape_extraction, X = x, centroid = cent, dots = dots)
                })
            }
}

# --------------------------------------------------------------------------------------------------
# dba
dba_cent <- function(x, x_split, cent, id_changed, cl_id, ..., distmat) {
    # not all arguments are used, but I want them to be isolated from ellipsis
    dots <- list(...)
    dots$error.check <- FALSE
    x_split <- split_parallel(x_split)
    cent <- split_parallel(cent)
    # return
    foreach(x_split = x_split, cent = cent,
            .combine = c,
            .multicombine = TRUE,
            .packages = "dtwclust",
            .export = c("quoted_call")) %op% {
                Map(x_split, cent, f = function(x, cent) {
                    quoted_call(DBA, X = x, centroid = cent, dots = dots)
                })
            }
}

# --------------------------------------------------------------------------------------------------
# sdtw_cent
sdtw_cent_cent <- function(x, x_split, cent, id_changed, cl_id, ..., distmat) {
    # not all arguments are used, but I want them to be isolated from ellipsis
    dots <- list(...)
    dots$error.check <- FALSE
    x_split <- split_parallel(x_split)
    cent <- split_parallel(cent)
    # return
    foreach(x_split = x_split, cent = cent,
            .combine = c,
            .multicombine = TRUE,
            .packages = "dtwclust",
            .export = c("quoted_call")) %op% {
                Map(x_split, cent, f = function(x, cent) {
                    quoted_call(sdtw_cent, series = x, centroid = cent, dots = dots)
                })
            }
}

# --------------------------------------------------------------------------------------------------
# mean
mean_cent <- function(x_split, ...) {
    # return
    lapply(x_split, function(xx) {
        if (is_multivariate(xx)) {
            ncols <- ncol(xx[[1L]]) # number of dimensions should be equal
            ncols <- rep(1L:ncols, length(xx))
            xx <- call_cbind(xx)
            xx <- split.data.frame(t(xx), ncols)
            call_cbind(lapply(xx, colMeans))
        }
        else {
            xx <- call_cbind(xx)
            rowMeans(xx)
        }
    })
}

# --------------------------------------------------------------------------------------------------
# median
median_cent <- function(x_split, ...) {
    # return
    lapply(x_split, function(xx) {
        if (is_multivariate(xx)) {
            ncols <- ncol(xx[[1L]]) # number of dimensions should be equal
            ncols <- rep(1L:ncols, length(xx))
            xx <- call_cbind(xx)
            xx <- split.data.frame(t(xx), ncols)
            call_cbind(lapply(xx, colMedians))
        }
        else {
            xx <- call_rbind(xx)
            colMedians(xx)
        }
    })
}

# --------------------------------------------------------------------------------------------------
# fcm
fcm_cent <- function(x, u, k, ..., distmat) {
    # UTILS-utils.R
    if (is_multivariate(x)) {
        mv <- reshape_multivariate(x, NULL)
        cent <- lapply(mv$series, fcm_cent, u = u)
        cent <- lapply(1L:k, function(idc) {
            sapply(cent, function(cent) { cent[idc, , drop = TRUE] })
        })
        cent <- lapply(cent, "dimnames<-", NULL)
        cent
    }
    else {
        cent <- t(u) %*% call_rbind(x)
        apply(cent, 2L, "/", e2 = colSums(u))
    }
}

# --------------------------------------------------------------------------------------------------
# fcmdd
fcmdd_cent <- function(x, u, k, ..., distmat) {
    q <- distmat$distmat %*% u
    idc <- apply(q, 2L, which.min)
    cent <- x[idc]
    distmat$id_cent <- idc
    cent
}

# ==================================================================================================
# Custom functions to calculate centroids
# ==================================================================================================

all_cent2 <- function(case = NULL, control) {
    if (case %in% c("fcm", "fcmdd")) {
        # function created here to capture objects of this environment (closure)
        allcent <- function(x, cl_id, k, cent, cl_old, ...) {
            # cent and cl_old are unused here, but R complains if signatures don't match
            x <- tslist(x)
            u <- cl_id ^ control$fuzziness
            cent <- quoted_call(
                paste0(case, "_cent"),
                x = x,
                u = u,
                k = k,
                distmat = control$distmat,
                dots = list(...)
            )
            # coerce back to list
            tslist(cent)
        }
    }
    else {
        if (case == "pam") case <- ".pam" # historic reasons

        allcent <- function(x, cl_id, k, cent, cl_old, ...) {
            x <- tslist(x)
            cent <- tslist(cent)
            # Check which clusters changed
            if (all(cl_old == 0L)) {
                id_changed <- sort(unique(cl_id))
            }
            else {
                id_changed <- cl_id != cl_old
                id_changed <- union(cl_id[id_changed], cl_old[id_changed])
            }

            if (length(id_changed) == 0L) return(cent)

            # Split data according to cluster memebership
            x_split <- split(x, factor(cl_id, levels = 1L:k))
            # In case of empty new clusters
            empty_clusters <- which(lengths(x_split) == 0L)
            id_changed <- setdiff(id_changed, empty_clusters)
            # Calculate new centroids
            new_cent <- quoted_call(
                paste0(case, "_cent"),
                x = x,
                x_split = x_split[id_changed],
                cent = cent[id_changed],
                id_changed = id_changed,
                cl_id = cl_id,
                distmat = control$distmat,
                dots = list(...)
            )

            cent[id_changed] <- new_cent

            # Any empty clusters?
            num_empty <- length(empty_clusters)
            # If so, initialize new clusters
            if (num_empty > 0L)
                cent[empty_clusters] <- reinit_clusters(x, cent, case, num_empty,
                                                        empty_clusters, control$distmat)
            # return
            cent
        }
    }
    # return closure
    allcent
}

Try the dtwclust package in your browser

Any scripts or data that you put into this service are public.

dtwclust documentation built on Sept. 11, 2024, 9:07 p.m.