R/DISTANCES-dtw-lb.R

Defines functions call_dtwlb dtw_lb

Documented in dtw_lb

#' DTW distance matrix guided by Lemire's improved lower bound
#'
#' Calculation of a distance matrix with the Dynamic Time Warping (DTW) distance guided by Lemire's
#' improved lower bound (LB_Improved).
#'
#' @export
#' @importFrom proxy dist
#'
#' @param x,y A matrix or data frame where rows are time series, or a list of time series.
#' @param window.size Window size to use with the LB and DTW calculation. See details.
#' @param norm Either `"L1"` for Manhattan distance or `"L2"` for Euclidean.
#' @param error.check `r roxygen_error_check_param()`
#' @param pairwise Calculate pairwise distances?
#' @param dtw.func Which function to use for the core DTW calculations, either "dtw" or "dtw_basic".
#'   See [dtw::dtw()] and [dtw_basic()].
#' @param nn.margin Either 1 to search for nearest neighbors row-wise, or 2 to search column-wise.
#'   Only implemented for `dtw.func` = "dtw_basic".
#' @param ... Further arguments for `dtw.func` or [lb_improved()].
#'
#' @details
#'
#' This function first calculates an initial estimate of a distance matrix between two sets of time
#' series using [lb_improved()] (the [proxy::dist()] version). Afterwards, it uses the estimate to
#' calculate the corresponding true DTW distance between *only* the nearest neighbors of each series
#' in `x` found in `y`, and it continues iteratively until no changes in the nearest neighbors
#' occur.
#'
#' If only `x` is provided, the distance matrix is calculated between all its time series,
#' effectively returning a matrix filled with the LB_Improved values.
#'
#' This could be useful in case one is interested in only the nearest neighbor of one or more series
#' within a dataset.
#'
#' `r roxygen_window_details()`
#'
#' @return The distance matrix with class `crossdist`.
#'
#' @section `r roxygen_rcpp_parallel_section()`
#'
#' @note
#'
#' This function uses a lower bound that is only defined for time series of equal length.
#'
#' The [proxy::dist()] version simply calls this function.
#'
#' A considerably large dataset is probably necessary before this is faster than using [dtw_basic()]
#' with [proxy::dist()]. Also note that [lb_improved()] calculates warping envelopes for the series
#' in `y`, so be careful with the provided order and `nn.margin` (see examples).
#'
#' @author Alexis Sarda-Espinosa
#'
#' @references
#'
#' Lemire D (2009). ``Faster retrieval with a two-pass dynamic-time-warping lower bound .'' *Pattern
#' Recognition*, **42**(9), pp. 2169 - 2180. ISSN 0031-3203,
#' \doi{10.1016/j.patcog.2008.11.030},
#' \url{https://www.sciencedirect.com/science/article/pii/S0031320308004925}.
#'
#' @seealso
#'
#' [lb_keogh()], [lb_improved()]
#'
#' @examples
#'
#' # Load data
#' data(uciCT)
#'
#' # Reinterpolate to same length
#' data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
#'
#' # Calculate the DTW distance between a certain subset aided with the lower bound
#' system.time(d <- dtw_lb(data[1:5], data[6:50], window.size = 20L))
#'
#' # Nearest neighbors
#' NN1 <- apply(d, 1L, which.min)
#'
#' # Calculate the DTW distances between all elements (slower)
#' system.time(d2 <- proxy::dist(data[1:5], data[6:50], method = "DTW",
#'                               window.type = "sakoechiba", window.size = 20L))
#'
#' # Nearest neighbors
#' NN2 <- apply(d2, 1L, which.min)
#'
#' # Calculate the DTW distances between all elements using dtw_basic
#' # (might be faster, see notes)
#' system.time(d3 <- proxy::dist(data[1:5], data[6:50], method = "DTW_BASIC",
#'                               window.size = 20L))
#'
#' # Nearest neighbors
#' NN3 <- apply(d3, 1L, which.min)
#'
#' # Change order and margin for nearest neighbor search
#' # (usually fastest, see notes)
#' system.time(d4 <- dtw_lb(data[6:50], data[1:5],
#'                          window.size = 20L, nn.margin = 2L))
#'
#' # Nearest neighbors *column-wise*
#' NN4 <- apply(d4, 2L, which.min)
#'
#' # Same results?
#' identical(NN1, NN2)
#' identical(NN1, NN3)
#' identical(NN1, NN4)
#'
dtw_lb <- function(x, y = NULL, window.size = NULL, norm = "L1",
                   error.check = TRUE, pairwise = FALSE,
                   dtw.func = "dtw_basic", nn.margin = 1L, ...)
{
    norm <- match.arg(norm, c("L1", "L2"))
    dtw.func <- match.arg(dtw.func, c("dtw", "dtw_basic"))
    nn.margin <- as.integer(nn.margin)
    if (nn.margin != 1L) nn.margin <- 2L

    x <- tslist(x)
    y_missing <- is.null(y)
    y <- if (y_missing) x else tslist(y)

    if (length(x) == 0L || length(y) == 0L) stop("Empty list received in x or y.")
    if (is_multivariate(c(x,y))) stop("dtw_lb does not support multivariate series.")
    if (error.check) check_consistency(c(x,y), "tslist")

    if (dtw.func == "dtw")
        method <- if (norm == "L1") "DTW" else "DTW2"
    else
        method <- toupper(dtw.func)

    dots <- list(...)
    dots$norm <- norm
    dots$window.size <- window.size
    dots$window.type <- if (is.null(window.size)) "none" else "slantedband"

    if (pairwise) {
        distfun <- ddist2(method, list(packages = "dtwclust")) # parallelization here
        return(quoted_call(distfun, x = x, centroids = y, pairwise = TRUE, dots = dots))
    }

    # NOTE: I tried starting with LBK estimate, refining with LBI and then DTW but, overall,
    # it was usually slower, almost the whole matrix had to be recomputed for LBI.

    # Initial estimate (window.size checked here)
    D <- proxy::dist(x, y, method = "LBI", ...,
                     window.size = window.size, norm = norm, error.check = FALSE)

    # y = NULL means diagonal is zero and NNs are themselves
    if (y_missing) {
        attr(D, "method") <- "DTW_LB"
        return(D)
    }

    if (method == "DTW_BASIC") {
        # modifies distmat in place
        dots$margin <- nn.margin
        quoted_call(call_dtwlb, x = x, y = y, distmat = D, dots = dots)
    }
    else {
        D <- split_parallel(D, 1L)
        x <- split_parallel(x)
        # Update with DTW in parallel
        D <- foreach(x = x,
                     distmat = D,
                     .combine = rbind,
                     .multicombine = TRUE,
                     .packages = "dtwclust",
                     .export = c("quoted_call", "call_dtwlb")) %op% {
                         if (nn.margin != 1L)
                             warning("Column-wise nearest neighbors are not implemented for dtw::dtw") # nocov
                         dots$pairwise <- TRUE
                         id_nn <- apply(distmat, 1L, which.min) # index of nearest neighbors
                         id_nn_prev <- id_nn + 1L # initialize all different
                         id_mat <- cbind(1L:nrow(distmat), id_nn) # to index the distance matrix
                         while (any(id_nn_prev != id_nn)) {
                             id_changed <- which(id_nn_prev != id_nn)
                             id_nn_prev <- id_nn

                             d_sub <- quoted_call(
                                 proxy::dist,
                                 x = x[id_changed],
                                 y = y[id_nn[id_changed]],
                                 method = method,
                                 dots = dots
                             )

                             distmat[id_mat[id_changed, , drop = FALSE]] <- d_sub
                             id_nn <- apply(distmat, 1L, which.min)
                             id_mat[, 2L] <- id_nn
                         }
                         # return from foreach()
                         distmat
                     }
    }

    class(D) <- "crossdist"
    attr(D, "method") <- "DTW_LB"
    attr(D, "call") <- match.call()
    # return
    D
}

# helper function
#' @importFrom dtw symmetric1
#' @importFrom dtw symmetric2
#'
call_dtwlb <- function(x, y, distmat, ..., window.size, norm, margin, step.pattern = NULL)
{
    if (is.null(step.pattern) || identical(step.pattern, dtw::symmetric2))
        step.pattern <- 2
    else if (identical(step.pattern, dtw::symmetric1))
        step.pattern <- 1
    else
        stop("step.pattern must be either symmetric1 or symmetric2 (without quotes)") # nocov

    dots <- list(window.size = window.size,
                 norm = switch(norm, "L1" = 1, "L2" = 2),
                 step.pattern = step.pattern,
                 backtrack = FALSE,
                 is.multivariate = FALSE,
                 normalize = FALSE,
                 sqrt.dist = TRUE)

    # UTILS-utils.R
    num_threads <- get_nthreads()
    # return
    .Call(C_dtw_lb, x, y, distmat, margin, dots, num_threads, PACKAGE = "dtwclust")
}

Try the dtwclust package in your browser

Any scripts or data that you put into this service are public.

dtwclust documentation built on Sept. 11, 2024, 9:07 p.m.