Nothing
#############################################################################
############# CRT main functions ################################################
#' Analysis of Cluster Randomised Education Trials using Multilevel Model under a Frequentist Setting.
#'
#' \code{crtFREQ} performs analysis of cluster randomised education trials using a multilevel model under a frequentist setting.
#'
#' @export
#' @param formula the model to be analysed is of the form y ~ x1+x2+.... Where y is the outcome variable and Xs are the independent variables.
#' @param random a string variable specifying the "clustering variable" as contained in the data. See example below.
#' @param intervention a string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.
#' @param baseln A string variable allowing the user to specify the reference category for intervention variable. When not specified, the first level will be used as a reference.
#' @param nBoot number of bootstraps required to generate bootstrap confidence intervals.
#' @param nPerm number of permutations required to generate a permutated p-value.
#' @param type method of bootstrapping including case re-sampling at student level "case(1)", case re-sampling at school level "case(2)", case re-sampling at both levels "case(1,2)" and residual bootstrapping using "residual". If not provided, default will be case re-sampling at student level.
#' @param ci method for bootstrap confidence interval calculations; options are the Basic (Hall's) confidence interval "basic" or the simple percentile confidence interval "percentile". If not provided default will be percentile.
#' @param seed seed required for bootstrapping and permutation procedure, if not provided default seed will be used.
#' @param data data frame containing the data to be analysed.
#' @return S3 object; a list consisting of
#' \itemize{
#' \item \code{Beta}: Estimates and confidence intervals for variables specified in the model.
#' \item \code{ES}: Conditional Hedges' g effect size and its 95% confidence intervals. If nBoot is not specified, 95% confidence intervals are based on standard errors. If nBoot is specified, they are non-parametric bootstrapped confidence intervals.
#' \item \code{covParm}: A vector of variance decomposition into between cluster variance (Schools) and within cluster variance (Pupils). It also contains intra-cluster correlation (ICC).
#' \item \code{SchEffects}: A vector of the estimated deviation of each school from the intercept.
#' \item \code{Perm}: A "nPerm x 2w" matrix containing permutated effect sizes using residual variance and total variance. "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is produced only when \code{nPerm} is specified.
#' \item \code{Bootstrap}: A "nBoot x 2w" matrix containing the bootstrapped effect sizes using residual variance (Within) and total variance (Total). "w" denotes number of intervention. "w=1" for two arm trial and "w=2" for three arm trial excluding the control group. It is only produced when \code{nBoot} is specified.
#' \item \code{Unconditional}: A list of unconditional effect sizes, covParm, Perm and Bootstrap obtained based on variances from the unconditional model (model with only the intercept as a fixed effect).
#' }
#' @example inst/examples/crtExample.R
crtFREQ<- function(formula,random,intervention,baseln,nPerm,nBoot,type,ci,seed,data)UseMethod("crtFREQ")
#' @export
crtFREQ.default <- function(formula,random,intervention,baseln,nPerm,nBoot,type,ci,seed,data){stop("No correct formula input given.")}
#' @export
crtFREQ.formula <- function(formula,random,intervention,baseln,nPerm,nBoot,type,ci,seed,data){
data <- na.omit(data.frame(data)[ ,unique(c(all.vars(formula),random, intervention))])
data <- data[order(data[,which(colnames(data)==random)]),]
intervention <- intervention
trt <- data[,which(colnames(data)==intervention)]
if( missing(baseln)){trt <- as.factor(trt)}
if(!missing(baseln)){trt <- relevel(as.factor(trt),baseln)}
tmp2 <- which(colnames(data)==random)
cluster2 <- data[,tmp2]
chk <- sum(rowSums(table(cluster2,trt)!=0)>1)
if(chk >0){stop("This is not a CRT design")}
stp <- as.character(row.names(table(cluster2,trt)))
control<-colnames(table(cluster2,trt))[1]
stp2 <- (apply(table(cluster2,trt),1,function(x)colnames(table(cluster2,trt))[x!=0]))
if(!missing(nPerm) & !missing(nBoot)){stop("Either nPerm or nBoot must be specified")}
if(missing(nPerm)){nPerm <-0}
if(missing(nBoot)){nBoot <-0}
if(!missing(type) & nBoot==0 | !missing(ci) & nBoot==0){stop("Please specify number of bootstraps")}
if(missing(type)){type<-"case(1)"}
if(missing(ci)){ci<-"percentile"}
optt <- c("case(1)","residual","case(2)","case(1,2)")
optc <- c("basic","percentile")
if(!type %in% optt | !ci %in% optc ) {stop("Please specify an allowed bootstrap option")}
tmp3 <- which(colnames(data)==intervention)
if( missing(baseln)){data[,tmp3] <- as.factor(data[,tmp3])}
if(!missing(baseln)){data[,tmp3] <- relevel(as.factor(data[,tmp3]),baseln)}
#data[,tmp3] <- as.factor(data[,tmp3])
mf <- model.frame(formula=formula, data=data)
mf <- mf[order(cluster2),]
cluster <- cluster2[order(cluster2)]
trt <- trt[order(cluster2)]
fixedDesignMatrix <- as.matrix(data.frame(model.matrix(attr(mf, "terms"), data=data)))
tmp <- colnames(fixedDesignMatrix )
tmp[1] <- "Intercept"
colnames(fixedDesignMatrix)<- tmp
posttest <- model.response(mf)
btp <- which(tmp %in% paste0(intervention, unique(data[, intervention]) ))
if(length(tmp2)!= 1){stop("Cluster variable misspecified")}
if(length(tmp3)!= 1){stop("Intervention variable misspecified")}
output <- crt(posttest=posttest,fixedDesignMatrix=fixedDesignMatrix,intervention=intervention,cluster=cluster, btp=btp)
if(nPerm>0){
if(nPerm<999){warning("Users should specify a higher number of iterations for valid results (nPerm>=1000)")}
output$Perm<- crt.perm(formula,data,stp,stp2,intervention,cluster,nPerm,random, btp,seed,baseln)
output$Condtional$Perm <- round(data.frame(output$Perm$condtional),2)
output$Unconditional$Perm <- round(data.frame(output$Perm$unconditional),2)
}
if(nBoot >0){
if(type=="residual"){
cov=matrix( nrow = 1, ncol = 2)
sigma2=matrix( nrow = 1, ncol = 2)
UFit <- lmer(posttest~ 1+(1|cluster))
cov[,2]<- as.numeric(summary(UFit)$varcor)
sigma2[,2]<- as.numeric(summary(UFit)$sigma^2)
Fit <- lmer(posttest~ fixedDesignMatrix-1+(1|cluster))
cov[,1]<- as.numeric(summary(Fit)$varcor)
sigma2[,1]<- as.numeric(summary(Fit)$sigma^2)
ran<-cbind(ranef(Fit)$cluster,ranef(UFit)$cluster) #School effects
ran$cluster <- rownames(ran)
res<-as.data.frame(cbind(resid(Fit),resid(UFit))) #Residuals
colnames(res)<-c("e.rsd","Ue.rsd")
pred<-as.data.frame(cbind(predict(Fit, re.form=NA),predict(UFit, re.form=NA))) #Fixed effects prediction
colnames(pred)<-c("feprd","Ufeprd")
for(i in 1:2){
res[,i]<-reinfl(varcor=sigma2[,i],J=length(res[,i]),res=res[,i])
ran[,i]<-reinfl(varcor=cov[,i],J=length(ran[,i]),res=ran[,i])
}
fixedDesignMatrix<-tryCatch(as.data.frame(merge(cbind(fixedDesignMatrix,cluster,pred,res),ran,all.x=TRUE,by="cluster")))
colnames(fixedDesignMatrix)[(ncol(fixedDesignMatrix)-5):ncol(fixedDesignMatrix)]<-c("feprd","Ufeprd","e.rsd","Ue.rsd","rndief","Urand.ef")
}
if(nBoot<1000){warning("Users should specify a higher number of iterations for valid results (nBoot>=1000)")}
tid <- c(1:nrow(fixedDesignMatrix))
#set.seed(1020252)
if(!missing(seed)){set.seed(seed)}
bootSamples <- NULL
for(ii in 1:length(unique(cluster))){
selID <- tid[cluster==unique(cluster)[ii]]
if(length(selID)>0){
selID2<- sapply(c(1:nBoot),function(x) selID [sample(1:length(selID), length(selID),replace=TRUE)])
bootSamples <- rbind(bootSamples ,selID2)
}
}
bootResults <- apply(bootSamples ,2,function(bt)crt.crt(posttest=posttest,fixedDesignMatrix=fixedDesignMatrix,intervention=intervention,cluster=cluster,type=type,bt=bt, btp=btp))
bootES <- bootCompile(output=output,trt=trt,bootResults=bootResults,intervention=intervention,ci=ci)
output$ES <- bootES
output$Bootstrap <- bootResults
output$Condtional$Bootstrap <- data.frame(t(sapply(1:nBoot, function(i)unlist(bootResults[[i]]$Conditional))))
output$Unconditional$Bootstrap <- data.frame(t(sapply(1:nBoot, function(i)unlist(bootResults[[i]]$Unconditional))))
Bnames <- gsub("Estimate1","Within", gsub("Estimate2", "Total",names(output$Condtional$Bootstrap )))
names(output$Condtional$Bootstrap) <- Bnames
names(output$Unconditional$Bootstrap) <- Bnames
}
output1 <- list()
output1$Beta <- output$Beta
output1$covParm <- output$covParm["Conditional",]
output1$ES <- output$ES$Conditional
output1$SchEffects <- output$SchEffects
if(nPerm > 0){output1$permES <- output$Condtional$Perm}
if(nBoot > 0){output1$Bootstrap <- output$Condtional$Bootstrap}
output1$Unconditional$ES <- output$ES$Unconditional
output1$Unconditional$covParm <- output$covParm["Unconditional",]
if(nPerm > 0){output1$Unconditional$permES <- output$Unconditional$Perm}
if(nBoot > 0){output1$Unconditional$Bootstrap <- output$Unconditional$Bootstrap}
output1$Method <- "MLM"
if(nBoot > 0){output1$Type <- type}
if(nBoot > 0){output1$CI <- ci}
output1$Function <- "crtFREQ"
class(output1) <- "eefAnalytics"
return(output1)
}
#######################################################################################
## random intercept model - internal
crt <- function(posttest,fixedDesignMatrix,intervention,cluster,btp){
freqFit <- lmer(posttest~ fixedDesignMatrix-1+ (1|cluster))
np<- row.names(summary(freqFit)$coef)
cit <- confint(freqFit,np)
betaB <- data.frame(cbind(summary(freqFit)$coefficients[,1],cit))
row.names(betaB)<- colnames(fixedDesignMatrix)
colnames(betaB) <- c("Estimate","95% LB ","95% UB")
betaB <- betaB
var.B<- as.numeric(summary(freqFit)$varcor)
var.W<- summary(freqFit)$sigma^2
var.tt <- var.W+var.B
ICC1 <- var.B/var.tt
sigmaBE1 <- round(c(var.B,var.W,var.B+var.W,(var.B/(var.B+var.W))),2)
names(sigmaBE1)<- c("Schools","Pupils","Total","ICC")
var.B1<- as.numeric(summary(lmer(posttest~ 1+ (1|cluster)))$varcor)
var.W1<- summary(lmer(posttest~ 1+(1|cluster)))$sigma^2
var.tt1 <- var.W1+var.B1
ICC <-(c(Conditional=ICC1,Unconditional=var.B1/var.tt1))
sigmaBE2 <- round(c(var.B1,var.W1,var.B1+var.W1,(var.B1/(var.B1+var.W1))),2)
names(sigmaBE2)<- c("Schools","Pupils","Total","ICC")
sigmaBE <- data.frame(rbind(Conditional=sigmaBE1,
Unconditional=sigmaBE2))
sigmaBE <- sigmaBE
sigma.W<-c(Conditional=var.W,Unconditional=var.W1)
sigma.tt<-c(Conditional=var.tt,Unconditional=var.tt1)
schRand <- data.frame(unique(cluster),ranef(freqFit)$cluster)
names(schRand)<- c("Schools","Estimate")
#btp <- which(substring(row.names(betaB),1,nchar(intervention))==intervention &
# nchar(colnames(fixedDesignMatrix))==(nchar(intervention)+1))
output2 <- list()
for( j in names(sigma.tt)){
var.w <-sigma.W[j]
var.tt<-sigma.tt[j]
icc<-ICC[j]
output.1<-list()
for( i in 1:length(btp )){
beta <- betaB[btp[i],1]
group <- fixedDesignMatrix[,btp[i]]
esWithin <- g.within(var.w=var.w, beta=beta, icc=icc, group=group, schoolID=cluster)
esTotal <- g.total(var.tt=var.tt, beta=beta, icc=icc, group=group, schoolID=cluster)
output1 <- data.frame(rbind(esWithin,esTotal))
colnames(output1) <- c("Estimate","95% LB","95% UB")
rownames(output1) <- c("Within","Total")
output.1[[i]] <- round(output1,2)
}
names(output.1) <- row.names(betaB)[btp]
output2[[j]] <- output.1
}
output <- list(Beta=round(betaB,2),covParm=sigmaBE,ES=output2,SchEffects=round(schRand,2))
return(output)
}
## internal
crtP <- function(posttest,fixedDesignMatrix,intervention,cluster,btp){
freqFit <- lmer(posttest~ fixedDesignMatrix-1+ (1|cluster))
betaB <- data.frame(summary(freqFit)$coefficients[,1])
row.names(betaB)<- colnames(fixedDesignMatrix)
#colnames(betaB) <- c("Estimate","95% LB ","95% UB")
betaB <- betaB
var.B<- as.numeric(summary(freqFit)$varcor)
var.W<- summary(freqFit)$sigma^2
var.tt <- var.W+var.B
ICC1 <- var.B/var.tt
sigmaBE1 <- c(var.B,var.W)
freqFit1 <- lmer(posttest~ 1+ (1|cluster))
var.B1<- as.numeric(summary(freqFit1)$varcor)
var.W1<- summary(freqFit1)$sigma^2
var.tt1 <- var.W1+var.B1
ICC <-(c(Conditional=ICC1,Unconditional=var.B1/var.tt1))
sigmaBE2 <- c(var.B1,var.W1)
sigmaBE <- data.frame(rbind(Conditional=sigmaBE1,Unconditional=sigmaBE2))
sigmaBE <- sigmaBE
sigma.W<-c(Conditional=var.W,Unconditional=var.W1)
sigma.tt<-c(Conditional=var.tt,Unconditional=var.tt1)
#btp <- which(substring(row.names(betaB),1,nchar(intervention))==intervention &
# nchar(colnames(fixedDesignMatrix))==(nchar(intervention)+1))
output2 <- list()
for( j in names(sigma.tt)){
var.w <-sigma.W[j]
var.tt<-sigma.tt[j]
icc<-ICC[j]
output.1<-list()
for( i in 1:length(btp)){
beta <- betaB[btp[i],1]
group <- fixedDesignMatrix[,btp[i]]
esWithin <- g.within(var.w=var.w, beta=beta, icc=icc, group=group, schoolID=cluster)
esTotal <- g.total(var.tt=var.tt, beta=beta, icc=icc, group=group, schoolID=cluster)
output1 <- data.frame(rbind(esWithin,esTotal))
colnames(output1) <- c("Estimate","95% LB","95% UB")
rownames(output1) <- c("Within","Total")
output.1[[i]] <- round(output1,2)
}
names(output.1) <- row.names(betaB)[btp]
output2[[j]] <- output.1
}
output <- list(ES=output2)
return(output)
}
## - internal
crt.perm <- function(formula,data,stp,stp2,intervention,cluster,nPerm,random,btp,seed,baseln){
data2 <- data[,-which(colnames(data)==intervention)]
g <- matrix(NA,nPerm,2*(length(unique(stp2))-1))
g.unc <- matrix(NA,nPerm,2*(length(unique(stp2))-1))
for(i in 1:nPerm){
#set.seed(12890*i+1)
if(!missing(seed)){set.seed(seed*i+1)}
tp3 <- data.frame(stp,sample(stp2))
names(tp3) <- c(paste(random),paste(intervention))
data.tp4 <- merge(data2,tp3,by=random)
data.tp4 <- data.tp4[order(data.tp4[,which(colnames(data.tp4)==random)]),]
cluster = data.tp4[,which(colnames(data.tp4)==random)]
tmp34 <- which(colnames(data.tp4)==intervention)
#data.tp4[,tmp34] <- as.factor(data.tp4[,tmp34])
if( missing(baseln)){data.tp4[,tmp34] <- as.factor(data.tp4[,tmp34])}
if(!missing(baseln)){data.tp4[,tmp34] <- relevel(as.factor(data.tp4[,tmp34]),baseln)}
mf <- model.frame(formula=formula, data=data.tp4)
fixedDesignMatrix <- as.matrix(data.frame(model.matrix(attr(mf, "terms"), data=data.tp4)))
tmp <- colnames(fixedDesignMatrix )
tmp[1] <- "Intercept"
colnames(fixedDesignMatrix)<- tmp
posttest <- model.response(mf)
intervention <- intervention
p2CRTFREQ <-crtP(posttest=posttest,fixedDesignMatrix=fixedDesignMatrix,intervention=intervention,cluster=cluster, btp=btp)
chkppp <- data.frame(cond=unlist(p2CRTFREQ$ES$Conditional),uncond=unlist(p2CRTFREQ$ES$Unconditional))
chkppp2 <- c(seq(1,6*(length(unique(tp3[,2]))-1),6),seq(2,6*(length(unique(tp3[,2]))-1),6))
chkppp3 <- chkppp2[order(chkppp2)]
g[i,] <- chkppp[chkppp3,"cond"]
g.unc[i,] <- chkppp[chkppp3,"uncond"]
}
ntpp <- rep(names(p2CRTFREQ$ES$Conditional),2)
ntpp <- ntpp[order(ntpp )]
wt <- rep(c("Within","Total"),length(names(p2CRTFREQ$ES$Conditional)))
colnames(g) <- paste(ntpp ,wt,sep="")
colnames(g.unc) <- paste(ntpp ,wt,sep="")
g1 <- list(condtional=g,unconditional=g.unc)
return(g1)
}
## - internal
crt.crt<- function(posttest,fixedDesignMatrix,intervention,cluster,type,bt,btp){
if(type=="case(1)") {
posttest2 <- posttest[bt]
fixedDesignMatrix2 <- fixedDesignMatrix[bt,]
cluster2 <- cluster[bt]
}
if(type=="case(2)") {
chk<-0
q<-0
binded<-as.data.frame(cbind(posttest,fixedDesignMatrix,cluster))
while(chk %in% c(0,1)){ #average=1|0 implies no variation in one or more dummies.
q<-q+1
if(q>100) {stop("Re-sampling of cases has failed.")}
sdata <- split(binded, binded[,"cluster"])
schsamp <- sdata[sample(length(sdata), replace = TRUE)]
rbinded <- do.call(rbind, schsamp)
fixedDesignMatrix2<- as.matrix(rbinded[,which(names(rbinded) %in% colnames(fixedDesignMatrix))])
rownames(fixedDesignMatrix2) <- 1:nrow(fixedDesignMatrix2)
posttest2<-as.matrix(rbinded[,1])
cluster2<-as.matrix(rbinded[,"cluster"]) #maybe change the way the cluster is identified?
chk<-colMeans(as.matrix(fixedDesignMatrix2[,btp]))
}
}
if(type=="case(1,2)") {
binded<-as.data.frame(cbind(posttest,fixedDesignMatrix,cluster))
chk<-0
q<-0
binded<-as.data.frame(cbind(posttest,fixedDesignMatrix,cluster))
while(chk %in% c(0,1)){
q<-q+1
if(q>100) {stop("Re-sampling of cases has failed.")}
sdata <- split(binded, binded[,"cluster"])
schsamp <- sdata[sample(length(sdata), replace = TRUE)]
samp <- lapply(schsamp, function(x) x[sample(nrow(x), replace = TRUE), ])
rbinded <- do.call(rbind, samp)
posttest2<-as.matrix(rbinded[,1])
fixedDesignMatrix2<-as.matrix(rbinded[,which(names(rbinded) %in% colnames(fixedDesignMatrix))])
rownames(fixedDesignMatrix2) <- 1:nrow(fixedDesignMatrix2)
cluster2<-as.matrix(rbinded[,"cluster"])
chk<-colMeans(as.matrix(fixedDesignMatrix2[,btp]))
}
}
if(type=="residual") {
res<-as.data.frame(fixedDesignMatrix[ ,c("e.rsd","Ue.rsd")])
ran<-as.data.frame(fixedDesignMatrix[ ,c("cluster","rand.ef","Urand.ef")])
pred<-as.data.frame(fixedDesignMatrix[ ,c("feprd","Ufeprd")])
ressamp <- as.data.frame(res[sample(length(res[,1]), replace = TRUE),]) #or res[bt]
sdata <- split(ran,ran[,"cluster"])
sdata<-lapply(sdata, function(x) x[1,]) #collapse random effects by group
ransamp<-cbind(do.call(rbind, sdata))
rownames(ransamp) <- 1:nrow(ransamp)
ransamp[,c("rand.ef","Urand.ef")]<-ransamp[sample(length(ransamp[,1]), replace = TRUE),c("rand.ef","Urand.ef")]
binded<-cbind(fixedDesignMatrix[,"cluster"],pred,ressamp)
colnames(binded)[1]<-"cluster"
binded<-merge(binded,ransamp,all.x=TRUE,by="cluster")
posttest2<-rowSums(binded[,c("feprd","e.rsd","rand.ef")])
Uposttest2<-rowSums(binded[,c("Ufeprd","Ue.rsd","Urand.ef")])
fixedDesignMatrix <- as.matrix(fixedDesignMatrix[ ,-which(names(fixedDesignMatrix) %in% c("cluster","feprd","e.rsd","rand.ef","Ufeprd","Ue.rsd","Urand.ef"))])
rownames(fixedDesignMatrix) <- 1:nrow(fixedDesignMatrix)
fixedDesignMatrix2<-fixedDesignMatrix
cluster2 <- cluster
}
freqFit <- try(lmer(posttest2~ fixedDesignMatrix2-1+(1|cluster2)),silent=TRUE)
output2 <- NULL
if(!is(freqFit, "try-error")){
betaB <- data.frame(summary(freqFit)$coefficients[,1])
row.names(betaB)<- colnames(fixedDesignMatrix)
betaB <- betaB
var.B2<- as.matrix(summary(freqFit)$varcor)
var.B3 <- c(matrix(attr(var.B2[[1]],"stddev")))
var.B <- var.B3^2
var.W<- summary(freqFit)$sigma^2
var.tt <- var.W+var.B
ICC1 <- var.B/var.tt
sigmaBE1 <- c(var.B,var.W)
names(sigmaBE1)<- c("Schools","Pupils")
if(type=="residual") {posttest2<-Uposttest2}
var.B21<- as.matrix(summary(lmer(posttest2~ 1+ (1|cluster2)))$varcor)
var.B31 <- c(matrix(attr(var.B21[[1]],"stddev")))
var.B1 <- var.B31^2
var.W1<- summary(lmer(posttest2~ 1+(1|cluster2)))$sigma^2
var.tt1 <- var.W1+var.B1
ICC <-(c(Conditional=ICC1, Unconditional=var.B1/var.tt1))
sigmaBE2 <- c(var.B1,var.W1)
names(sigmaBE2)<- c("Schools","Pupils")
sigmaBE <- data.frame(rbind(Conditional=sigmaBE1,
Unconditional=sigmaBE2))
sigmaBE <- sigmaBE
sigma.W<-c(Conditional=var.W,Unconditional=var.W1)
sigma.tt<-c(Conditional=var.tt,Unconditional=var.tt1)
#btp <- which(substring(row.names(betaB),1,nchar(intervention))==intervention&
# nchar(colnames(fixedDesignMatrix))==(nchar(intervention)+1))
output2 <- list()
for( j in names(sigma.tt)){
var.w <-sigma.W[j]
var.tt<-sigma.tt[j]
output.1<-list()
for( i in 1:length(btp )){
beta <- betaB[btp[i],1]
group <- fixedDesignMatrix[,btp[i]]
esWithin <- beta/sqrt(var.w)
esTotal <- beta/sqrt(var.tt)
output1 <- data.frame(rbind(esWithin,esTotal))
names(output1) <- c("Estimate")
rownames(output1) <- c("Within","Total")
output.1[[i]] <- round(output1,2)
}
names(output.1) <- row.names(betaB)[btp]
output2[[j]] <- output.1
}
}
return(output2)
}
## - internal
g.within <- function(var.w, beta, icc, group, schoolID){
t <- group; id <- schoolID
d.w <- (beta/sqrt(var.w))
n.it <- table(id[t==1]); n.ic <- table(id[t==0])
m.t <- length(unique(id[t==1])); m.c <- length(unique(id[t==0]))
M <- (m.t + m.c)
N.t <- sum(table(id[t==1])); N.c <- sum(table(id[t==0]))
N <- (N.t + N.c)
n.sim.1 <- ((N.c * sum(n.it^2))/(as.numeric(N.t)*as.numeric(N)))
n.sim.2 <- ((N.t * sum(n.ic^2))/(as.numeric(N.c)*as.numeric(N)))
n.sim <- (n.sim.1 + n.sim.2)
vterm1 <- ((N.t+N.c)/(as.numeric(N.t)*as.numeric(N.c)))
vterm2 <- (((1+(n.sim-1)*icc))/(1-icc))
vterm3 <- ((d.w^2)/(2*(N-M)))
se <- sqrt(vterm1*vterm2+vterm3)
LB <- (d.w-1.96*se); UB <- (d.w+1.96*se)
output <- data.frame(d.w, LB, UB)
names(output) <- c("g", "LB", "UB")
return(output)
}
## - internal
g.total <- function(var.tt, beta, icc, group, schoolID){
t <- group; id <- schoolID
n.it <- table(id[t==1]); n.ic <- table(id[t==0])
m.t <- length(unique(id[t==1])); m.c <- length(unique(id[t==0]))
M <- (m.t + m.c)
N.t <- sum(table(id[t==1])); N.c <- sum(table(id[t==0]))
N <- (N.t + N.c)
n.ut <- ((N.t^2-sum(n.it^2))/(as.numeric(N.t)*as.numeric(m.t-1)))
n.uc <- ((N.c^2-sum(n.ic^2))/(as.numeric(N.c)*as.numeric(m.c-1)))
dt.1 <- (beta/sqrt(var.tt))
dt.2 <- sqrt(1-icc*(((N-n.ut*m.t-n.uc*m.c)+n.ut+n.uc-2)/(N-2)))
d.t <- (dt.1*dt.2)
n.sim.1 <- ((as.numeric(N.c) * sum(n.it^2))/(as.numeric(N.t)*as.numeric(N)))
n.sim.2 <- ((as.numeric(N.t) * sum(n.ic^2))/(as.numeric(N.c)*as.numeric(N)))
n.sim <- (n.sim.1 + n.sim.2)
B <- (n.ut*(m.t-1)+n.uc*(m.c-1))
A.t <- ((as.numeric(N.t)^2*sum(n.it^2)+(sum(n.it^2))^2-2*as.numeric(N.t)*sum(n.it^3))/as.numeric(N.t)^2)
A.c <- ((as.numeric(N.c)^2*sum(n.ic^2)+(sum(n.ic^2))^2-2*as.numeric(N.c)*sum(n.ic^3))/as.numeric(N.c)^2)
A <- (A.t + A.c)
vterm1 <- (((N.t+N.c)/(as.numeric(N.t)*as.numeric(N.c)))*(1+(n.sim-1)*icc))
vterm2 <- (((N-2)*(1-icc)^2+A*icc^2+2*B*icc*(1-icc))*d.t^2)
vterm3 <- (2*(N-2)*((N-2)-icc*(N-2-B)))
se <- sqrt(vterm1+vterm2/vterm3)
LB <- (d.t-1.96*se); UB <- (d.t+1.96*se)
output <- data.frame(d.t, LB, UB)
names(output)<- c("g", "LB", "UB")
return(output)
}
## compile bootstrap results - internal
bootCompile <- function(output,trt,bootResults,intervention,ci){
Con_withinBoot <- matrix(NA,nrow=length(bootResults),ncol=(length(unique(trt ))-1))
Con_totalBoot <- matrix(NA,nrow=length(bootResults),ncol=(length(unique(trt ))-1))
Un_withinBoot <- matrix(NA,nrow=length(bootResults),ncol=(length(unique(trt ))-1))
Un_totalBoot <- matrix(NA,nrow=length(bootResults),ncol=(length(unique(trt ))-1))
for(k in 1:length(bootResults)){
tmp <- bootResults[[k]]$Conditional
tmpR <- NULL
for(j in 1:length(tmp)){
tmpR <- c(tmpR,tmp[[j]][,1])
}
Con_withinBoot[k,] <- tmpR[seq(1,2*length(tmp),2)]
Con_totalBoot[k,] <- tmpR[seq(2,2*length(tmp),2)]
}
for(k in 1:length(bootResults)){
tmp1 <- bootResults[[k]]$Unconditional
tmpR1 <- NULL
for(j in 1:length(tmp1)){
tmpR1 <- c(tmpR1,tmp1[[j]][,1])
}
Un_withinBoot[k,] <- tmpR1[seq(1,2*length(tmp1),2)]
Un_totalBoot[k,] <- tmpR1[seq(2,2*length(tmp1),2)]
}
withinCI_Conditional <- apply(Con_withinBoot,2,function(x)quantile(x,prob=c(0.025,0.975)))
TotalCI_Conditional <- apply(Con_totalBoot,2,function(x)quantile(x,prob=c(0.025,0.975)))
withinCI_Unconditional <- apply(Un_withinBoot,2,function(x)quantile(x,prob=c(0.025,0.975)))
TotalCI_Unconditional <- apply(Un_totalBoot,2,function(x)quantile(x,prob=c(0.025,0.975)))
withinCI<-list(withinCI_Conditional,withinCI_Unconditional)
TotalCI<-list(TotalCI_Conditional,TotalCI_Unconditional)
ES<-list(output$ES$Conditional,output$ES$Unconditional)
if(ci=="basic") {
for(j in 1:2) {
g=1
within<-list()
total<-list()
for(i in 1:(length(unique(trt))-1)) {
within[[1]]<-2*(as.numeric(as.data.frame(ES[[j]])[1,g]))-as.numeric(withinCI[[j]]["2.5%",i])
within[[2]]<-2*(as.numeric(as.data.frame(ES[[j]])[1,g]))-as.numeric(withinCI[[j]]["97.5%",i])
withinCI[[j]]["97.5%",i]<-within[[1]]
withinCI[[j]]["2.5%",i]<-within[[2]]
total[[1]] <-2*(as.numeric(as.data.frame(ES[[j]])[2,g]))-as.numeric(TotalCI[[j]]["2.5%",i])
total[[2]] <-2*(as.numeric(as.data.frame(ES[[j]])[2,g]))-as.numeric(TotalCI[[j]]["97.5%",i])
TotalCI[[j]]["97.5%",i]<-total[[1]]
TotalCI[[j]]["2.5%",i]<-total[[2]]
g=g+3
}
}
}
names(ES)<-c("Conditional","Unconditional")
names(withinCI)<-c("Conditional","Unconditional")
names(TotalCI)<-c("Conditional","Unconditional")
#btp <- which(substring(row.names(output$Beta),1,nchar(intervention))==intervention)
tmpES <- list()
for( j in names(ES)){
withinCI1<-withinCI[[j]]
TotalCI1<-TotalCI[[j]]
ES1<-ES[[j]]
temp<-list()
for(kk in 1:length(ES1)){
tmp1 <- round(rbind(withinCI1[,kk], TotalCI1[,kk]),2)
tmp2 <- cbind(ES1[[kk]][,1],tmp1)
colnames(tmp2)<- c("Estimate","95% LB","95% UB")
row.names(tmp2) <- c("Within","Total")
temp[[kk]] <- tmp2
}
names(temp) <- names(ES1)
tmpES[[j]] <- temp
#names(tmpES) <- names(output$ES)
}
return(tmpES)
}
## centers and reflates residuals - internal
reinfl<-function(varcor,J,res){
res<-res-mean(res)
Lr<-chol(varcor)
Ls<-chol(crossprod(res)/J)
A<-t(Lr%*%solve(Ls))
out<-res%*%A
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.