Nothing
#' Supervised Factor Conversions into Linear Functions using Bayesian Likelihood
#' Encodings
#'
#' `step_lencode_bayes()` creates a *specification* of a recipe step that will
#' convert a nominal (i.e. factor) predictor into a single set of scores derived
#' from a generalized linear model estimated using Bayesian analysis.
#'
#' @param recipe A recipe object. The step will be added to the sequence of
#' operations for this recipe.
#' @param ... One or more selector functions to choose variables. For
#' `step_lencode_bayes`, this indicates the variables to be encoded into a
#' numeric format. See [recipes::selections()] for more details. For the
#' `tidy` method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param outcome A call to `vars` to specify which variable is used as the
#' outcome in the generalized linear model. Only numeric and two-level factors
#' are currently supported.
#' @param options A list of options to pass to [rstanarm::stan_glmer()].
#' @param verbose A logical to control the default printing by
#' [rstanarm::stan_glmer()].
#' @param mapping A list of tibble results that define the encoding. This is
#' `NULL` until the step is trained by [recipes::prep()].
#' @param skip A logical. Should the step be skipped when the recipe is baked by
#' [recipes::bake()]? While all operations are baked when [recipes::prep()] is
#' run, some operations may not be able to be conducted on new data (e.g.
#' processing the outcome variable(s)). Care should be taken when using `skip
#' = TRUE` as it may affect the computations for subsequent operations
#' @param trained A logical to indicate if the quantities for preprocessing have
#' been estimated.
#' @param id A character string that is unique to this step to identify it.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the selectors or variables for encoding), `level` (the
#' factor levels), and `value` (the encodings).
#' @keywords datagen
#' @concept preprocessing encoding
#' @details
#'
#' For each factor predictor, a generalized linear model is fit to the outcome
#' and the coefficients are returned as the encoding. These coefficients are on
#' the linear predictor scale so, for factor outcomes, they are in log-odds
#' units. The coefficients are created using a no intercept model and, when two
#' factor outcomes are used, the log-odds reflect the event of interest being
#' the _first_ level of the factor.
#'
#' For novel levels, a slightly timmed average of the coefficients is returned.
#'
#' A hierarchical generalized linear model is fit using [rstanarm::stan_glmer()]
#' and no intercept via
#'
#' ```
#' stan_glmer(outcome ~ (1 | predictor), data = data, ...)
#' ```
#'
#' where the `...` include the `family` argument (automatically set by the step,
#' unless passed in by `options`) as well as any arguments given to the
#' `options` argument to the step. Relevant options include `chains`, `iter`,
#' `cores`, and arguments for the priors (see the links in the References
#' below). `prior_intercept` is the argument that has the most effect on the
#' amount of shrinkage.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is retruned with
#' columns `level`, `value`, `terms`, and `id`:
#'
#' \describe{
#' \item{level}{character, the factor levels}
#' \item{value}{numeric, the encoding}
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-supervised
#'
#' @references
#'
#' Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality
#' categorical attributes in classification and prediction problems," ACM SIGKDD
#' Explorations Newsletter, 3(1), 27-32.
#'
#' Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive
#' Modeling," arXiv:1611.09477
#'
#' "Hierarchical Partial Pooling for Repeated Binary Trials"
#' \url{https://CRAN.R-project.org/package=rstanarm/vignettes/pooling.html}
#'
#' "Prior Distributions for `rstanarm` Models"
#' \url{http://mc-stan.org/rstanarm/reference/priors.html}
#'
#' "Estimating Generalized (Non-)Linear Models with Group-Specific Terms with
#' `rstanarm`" \url{http://mc-stan.org/rstanarm/articles/glmer.html}
#'
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' library(dplyr)
#' library(modeldata)
#'
#' data(grants)
#'
#' set.seed(1)
#' grants_other <- sample_n(grants_other, 500)
#' \donttest{
#' reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
#' step_lencode_bayes(sponsor_code, outcome = vars(class))
#' }
#' @export
step_lencode_bayes <-
function(recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
options = list(seed = sample.int(10^5, 1)),
verbose = FALSE,
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_bayes")) {
if (is.null(outcome)) {
rlang::abort("Please list a variable in `outcome`")
}
add_step(
recipe,
step_lencode_bayes_new(
terms = enquos(...),
role = role,
trained = trained,
outcome = outcome,
options = options,
verbose = verbose,
mapping = mapping,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_lencode_bayes_new <-
function(terms, role, trained, outcome, options, verbose, mapping, skip, id,
case_weights) {
step(
subclass = "lencode_bayes",
terms = terms,
role = role,
trained = trained,
outcome = outcome,
options = options,
verbose = verbose,
mapping = mapping,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_lencode_bayes <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts)
if (isFALSE(were_weights_used) || is.null(wts)) {
wts <- NULL
}
if (length(col_names) > 0) {
check_type(training[, col_names], types = c("string", "factor", "ordered"))
y_name <- recipes_eval_select(x$outcome, training, info)
res <-
purrr::map(training[, col_names], stan_coefs,
y = training[, y_name],
x$options, x$verbose, wts
)
} else {
res <- list()
}
step_lencode_bayes_new(
terms = x$terms,
role = x$role,
trained = TRUE,
outcome = x$outcome,
options = x$options,
verbose = x$verbose,
mapping = res,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
stan_coefs <- function(x, y, options, verbose, wts = NULL, ...) {
rlang::check_installed("rstanarm")
if (is.null(options$family)) {
if (is.factor(y[[1]])) {
fam <- binomial()
} else {
fam <- gaussian()
}
} else {
fam <- options$family
options$family <- NULL
}
form <- as.formula(paste0(names(y), "~ (1|value)"))
if (is.vector(x) || is.factor(x)) {
x <- tibble(value = x)
} else {
x <- as_tibble(x)
}
args <-
list(
form,
data = vec_cbind(x, y),
family = fam,
na.action = na.omit
)
if (length(options) > 0) {
args <- c(args, options)
}
if (!is.null(wts)) {
args$weights <- as.double(wts)
}
cl <- rlang::call2("stan_glmer", .ns = "rstanarm", !!!args)
if (!verbose) {
junk <- capture.output(mod <- rlang::eval_tidy(cl))
} else {
mod <- rlang::eval_tidy(cl)
}
coefs <- coef(mod)$value
coefs <- as.data.frame(coefs)
coefs <- set_names(coefs, "..value")
coefs <- rownames_to_column(coefs, "..level")
coefs <- as_tibble(coefs)
mean_coef <- mean(coefs$..value, na.rm = TRUE, trim = .1)
coefs$..value[is.na(coefs$..value)] <- mean_coef
new_row <- tibble(..level = "..new", ..value = mean_coef)
coefs <- bind_rows(coefs, new_row)
if (is.factor(y[[1]])) {
coefs$..value <- -coefs$..value
}
coefs
}
#' @export
bake.step_lencode_bayes <- function(object, new_data, ...) {
col_names <- names(object$mapping)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
new_data[[col_name]] <- map_glm_coef(
new_data[, col_name], # map_glm_coef() expects a tibble
object$mapping[[col_name]]
)
}
new_data
}
#' @export
print.step_lencode_bayes <-
function(x, width = max(20, options()$width - 31), ...) {
title <- "Linear embedding for factors via Bayesian GLM for "
print_step(
names(x$mapping), x$terms, x$trained, title, width,
case_weights = x$case_weights
)
invisible(x)
}
#' @rdname step_lencode_bayes
#' @usage NULL
#' @export
tidy.step_lencode_bayes <- function(x, ...) {
if (is_trained(x)) {
if (length(x$mapping) == 0) {
res <- tibble(
terms = character(),
level = character(),
value = double()
)
} else {
for (i in seq_along(x$mapping)) {
x$mapping[[i]]$terms <- names(x$mapping)[i]
}
res <- bind_rows(x$mapping)
names(res) <- gsub("^\\.\\.", "", names(res))
}
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
level = rep(na_chr, length(term_names)),
value = rep(na_dbl, length(term_names))
)
}
res$id <- x$id
res
}
#' S3 methods for tracking which additional packages are needed for steps.
#'
#' Recipe-adjacent packages always list themselves as a required package so that
#' the steps can function properly within parallel processing schemes.
#' @param x A recipe step
#' @return A character vector
#' @rdname required_pkgs.embed
#' @keywords internal
#' @export
required_pkgs.step_lencode_bayes <- function(x, ...) {
c("rstanarm", "embed")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.