Nothing
cdf.fitMOSgev0 <-
function(fit, ensembleData, values, dates = NULL, randomizeATzero = FALSE, ...)
{
gini.md <- function(x,na.rm=FALSE) { ## Michael Scheuerer's code
if(na.rm & any(is.na(x))) x <- x[!is.na(x)]
n <-length(x)
return(4*sum((1:n)*sort(x,na.last=TRUE))/(n^2)-2*mean(x)*(n+1)/n)
}
M <- matchEnsembleMembers(fit,ensembleData)
nForecasts <- ensembleSize(ensembleData)
if (!all(M == 1:nForecasts)) ensembleData <- ensembleData[,M]
## remove instances missing all forecasts or dates
M <- apply(ensembleForecasts(ensembleData), 1, function(z) all(is.na(z)))
ensembleData <- ensembleData[!M,]
nObs <- nrow(ensembleData)
if (!is.null(dates)) warning("dates ignored")
CDF <- matrix(NA, nObs, length(values))
dimnames(CDF) <- list(ensembleObsLabels(ensembleData),as.character(values))
ensembleData <- ensembleForecasts(ensembleData)
x <- c(fit$a,fit$B)
A <- cbind(rep(1,nObs),ensembleData)
SHAPE <- fit$q
S <- fit$s
S.sq <- apply(ensembleData,1,gini.md, na.rm = TRUE)
MEAN <- A%*%x + S*rowMeans(ensembleData==0, na.rm = TRUE)
SCALE <- rep(fit$c,nObs) + rep(fit$d,nObs)*S.sq
LOC <- MEAN - SCALE*(gamma(1-SHAPE)-1)/SHAPE
for (i in 1:length(values)){
if (randomizeATzero & (values[i]==0)){
cdfval <- pgev(0, loc=LOC, scale=SCALE, shape=SHAPE)
CDF[,i] <- runif(nObs,0,cdfval)
}
else {
CDF[,i] <- pgev(values[i], loc=LOC, scale=SCALE, shape=SHAPE)
}
}
CDF
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.