Nothing
### Univariate GEV and POT Models ###
"plot.uvevd" <- function(x, which = 1:4, main, ask = nb.fig <
length(which) && dev.interactive(), ci = TRUE, cilwd = 1, a = 0,
adjust = 1, jitter = FALSE, nplty = 2, ...)
{
if (!inherits(x, "uvevd"))
stop("Use only with uvevd objects")
if (!is.numeric(which) || any(which < 1) || any(which > 4))
stop("`which' must be in 1:4")
nb.fig <- prod(par("mfcol"))
show <- rep(FALSE, 4)
show[which] <- TRUE
if(missing(main)) {
main <- c("Probability Plot", "Quantile Plot", "Density Plot",
"Return Level Plot")
}
else {
if(length(main) != length(which))
stop("number of plot titles is not correct")
main2 <- character(4)
main2[show] <- main
main <- main2
}
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
if (show[1]) {
pp(x, ci = ci, cilwd = cilwd, a = a, main = main[1], xlim = c(0,1),
ylim = c(0,1), ...)
}
if (show[2]) {
qq(x, ci = ci, cilwd = cilwd, a = a, main = main[2], ...)
}
if (show[3]) {
dens(x, adjust = adjust, nplty = nplty, jitter = jitter,
main = main[3], ...)
}
if (show[4]) {
rl(x, ci = ci, cilwd = cilwd, a = a, main = main[4], ...)
}
invisible(x)
}
"plot.gumbelx" <- function(x, interval, which = 1:4, main, ask = nb.fig <
length(which) && dev.interactive(), ci = TRUE, cilwd = 1, a = 0,
adjust = 1, jitter = FALSE, nplty = 2, ...)
{
if (!inherits(x, "gumbelx"))
stop("Use only with gumbelx objects")
if (!is.numeric(which) || any(which < 1) || any(which > 4))
stop("`which' must be in 1:4")
nb.fig <- prod(par("mfcol"))
show <- rep(FALSE, 4)
show[which] <- TRUE
if(missing(main)) {
main <- c("Probability Plot", "Quantile Plot", "Density Plot",
"Return Level Plot")
}
else {
if(length(main) != length(which))
stop("number of plot titles is not correct")
main2 <- character(4)
main2[show] <- main
main <- main2
}
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
if (show[1]) {
pp(x, ci = ci, cilwd = cilwd, a = a, main = main[1], xlim = c(0,1),
ylim = c(0,1), ...)
}
if (show[2]) {
qq(x, interval = interval, ci = ci, cilwd = cilwd, a = a, main = main[2], ...)
}
if (show[3]) {
dens(x, adjust = adjust, nplty = nplty, jitter = jitter,
main = main[3], ...)
}
if (show[4]) {
rl(x, interval = interval, ci = ci, cilwd = cilwd, a = a, main = main[4], ...)
}
invisible(x)
}
"qq" <- function (x, ...) UseMethod("qq")
"pp" <- function (x, ...) UseMethod("pp")
"rl" <- function (x, ...) UseMethod("rl")
"dens" <- function (x, ...) UseMethod("dens")
"qq.gev" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Quantile Plot", xlab = "Model", ylab = "Empirical", ...)
{
quant <- qgev(ppoints(x$tdata, a = a), loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
if(!ci) {
plot(quant, sort(x$tdata), main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgev(x$n*99, loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$tdata)
matplot(quant, cbind(rs,env), main = main, xlab = xlab, ylab = ylab,
type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], quant, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(quant-smidge, env[,1], quant+smidge, env[,1], lwd = cilwd)
segments(quant-smidge, env[,2], quant+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = quant, y = sort(x$tdata)))
}
"pp.gev" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Probability Plot", xlab = "Empirical", ylab = "Model", ...)
{
ppx <- ppoints(x$n, a = a)
probs <- pgev(sort(x$tdata), loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
if(!ci) {
plot(ppx, probs, main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgev(x$n*99, loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
env[,1] <- pgev(env[,1], loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
env[,2] <- pgev(env[,2], loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
matplot(ppx, cbind(probs, env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], ppx, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(ppx-smidge, env[,1], ppx+smidge, env[,1], lwd = cilwd)
segments(ppx-smidge, env[,2], ppx+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = ppx, y = probs))
}
"rl.gev" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Return Level Plot", xlab = "Return Period", ylab = "Return Level", ...)
{
ppx <- ppoints(x$tdata, a = a)
rps <- c(1.001,10^(seq(0,3,len=200))[-1])
p.upper <- 1/rps
rlev <- qgev(p.upper, loc = x$loc, scale = x$param["scale"],
shape = x$param["shape"], lower.tail = FALSE)
if(!ci) {
plot(-1/log(ppx), sort(x$tdata),log = "x", main = main,
xlab = xlab, ylab = ylab, ...)
lines(-1/log(1-p.upper), rlev)
}
else {
samp <- rgev(x$n*99, loc = x$loc,
scale = x$param["scale"], shape = x$param["shape"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$tdata)
matplot(-1/log(ppx), cbind(rs,env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, log = "x", ...)
lines(-1/log(1-p.upper), rlev)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], log10(-1/log(ppx)), xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments((-1/log(ppx))*exp(-smidge), env[,1],
(-1/log(ppx))*exp(smidge), env[,1], lwd = cilwd)
segments((-1/log(ppx))*exp(-smidge), env[,2],
(-1/log(ppx))*exp(smidge), env[,2], lwd = cilwd)
}
invisible(list(x = -1/log(1-p.upper), y = rlev))
}
"dens.gev" <- function(x, adjust = 1, nplty = 2, jitter = FALSE, main = "Density Plot", xlab = "Quantile", ylab = "Density", ...)
{
xlimit <- range(x$tdata)
xlimit[1] <- xlimit[1] - diff(xlimit) * 0.075
xlimit[2] <- xlimit[2] + diff(xlimit) * 0.075
xvec <- seq(xlimit[1], xlimit[2], length = 100)
dens <- dgev(xvec, loc = x$loc, scale = x$param["scale"],
shape = x$param["shape"])
plot(spline(xvec, dens), main = main, xlab = xlab, ylab = ylab,
type = "l", ...)
if(jitter) rug(jitter(x$tdata))
else rug(x$tdata)
lines(density(x$tdata, adjust = adjust), lty = nplty)
invisible(list(x = xvec, y = dens))
}
"qq.gumbelx" <- function(x, interval, ci = TRUE, cilwd = 1, a = 0, main = "Quantile Plot", xlab = "Model", ylab = "Empirical", ...)
{
quant <- qgumbelx(ppoints(x$data, a = a), interval = interval, loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
if(!ci) {
plot(quant, sort(x$data), main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgumbelx(x$n*99, loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$data)
matplot(quant, cbind(rs,env), main = main, xlab = xlab, ylab = ylab,
type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], quant, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(quant-smidge, env[,1], quant+smidge, env[,1], lwd = cilwd)
segments(quant-smidge, env[,2], quant+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = quant, y = sort(x$data)))
}
"pp.gumbelx" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Probability Plot", xlab = "Empirical", ylab = "Model", ...)
{
ppx <- ppoints(x$n, a = a)
probs <- pgumbelx(sort(x$data), loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
if(!ci) {
plot(ppx, probs, main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgumbelx(x$n*99, loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
env[,1] <- pgumbelx(env[,1], loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
env[,2] <- pgumbelx(env[,2], loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
matplot(ppx, cbind(probs, env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], ppx, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(ppx-smidge, env[,1], ppx+smidge, env[,1], lwd = cilwd)
segments(ppx-smidge, env[,2], ppx+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = ppx, y = probs))
}
"rl.gumbelx" <- function(x, interval, ci = TRUE, cilwd = 1, a = 0, main = "Return Level Plot", xlab = "Return Period", ylab = "Return Level", ...)
{
ppx <- ppoints(x$data, a = a)
rps <- c(1.001,10^(seq(0,3,len=200))[-1])
p.upper <- 1/rps
rlev <- qgumbelx(p.upper, interval = interval, loc1 = x$param["loc1"], scale1 = x$param["scale1"],
loc2 = x$param["loc2"], scale2 = x$param["scale2"], lower.tail = FALSE)
if(!ci) {
plot(-1/log(ppx), sort(x$data),log = "x", main = main,
xlab = xlab, ylab = ylab, ...)
lines(-1/log(1-p.upper), rlev)
}
else {
samp <- rgumbelx(x$n*99, loc1 = x$param["loc1"],
scale1 = x$param["scale1"], loc2 = x$param["loc2"], scale2 = x$param["scale2"])
samp <- matrix(samp, x$n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$data)
matplot(-1/log(ppx), cbind(rs,env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, log = "x", ...)
lines(-1/log(1-p.upper), rlev)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], log10(-1/log(ppx)), xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments((-1/log(ppx))*exp(-smidge), env[,1],
(-1/log(ppx))*exp(smidge), env[,1], lwd = cilwd)
segments((-1/log(ppx))*exp(-smidge), env[,2],
(-1/log(ppx))*exp(smidge), env[,2], lwd = cilwd)
}
invisible(list(x = -1/log(1-p.upper), y = rlev))
}
"dens.gumbelx" <- function(x, adjust = 1, nplty = 2, jitter = FALSE, main = "Density Plot", xlab = "Quantile", ylab = "Density", ...)
{
xlimit <- range(x$data)
xlimit[1] <- xlimit[1] - diff(xlimit) * 0.075
xlimit[2] <- xlimit[2] + diff(xlimit) * 0.075
xvec <- seq(xlimit[1], xlimit[2], length = 100)
dens <- dgumbelx(xvec, loc1 = x$param["loc1"], scale1 = x$param["scale1"],
loc2 = x$param["loc2"], scale2 = x$param["scale2"])
plot(spline(xvec, dens), main = main, xlab = xlab, ylab = ylab,
type = "l", ...)
if(jitter) rug(jitter(x$data))
else rug(x$data)
lines(density(x$data, adjust = adjust), lty = nplty)
invisible(list(x = xvec, y = dens))
}
"qq.pot" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Quantile Plot", xlab = "Model", ylab = "Empirical", ...)
{
quant <- qgpd(ppoints(x$nhigh, a = a), loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
if(!ci) {
plot(quant, sort(x$exceedances), main = main, xlab = xlab,
ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgpd(x$nhigh*99, loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
samp <- matrix(samp, x$nhigh, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$exceedances)
matplot(quant, cbind(rs,env), main = main, xlab = xlab, ylab = ylab,
type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], quant, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(quant-smidge, env[,1], quant+smidge, env[,1], lwd = cilwd)
segments(quant-smidge, env[,2], quant+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = quant, y = sort(x$exceedances)))
}
"pp.pot" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Probability Plot", xlab = "Empirical", ylab = "Model", ...)
{
ppx <- ppoints(x$nhigh, a = a)
probs <- pgpd(sort(x$exceedances), loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
if(!ci) {
plot(ppx, probs, main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- rgpd(x$nhigh*99, loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
samp <- matrix(samp, x$nhigh, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
env[,1] <- pgpd(env[,1], loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
env[,2] <- pgpd(env[,2], loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
matplot(ppx, cbind(probs, env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], ppx, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(ppx-smidge, env[,1], ppx+smidge, env[,1], lwd = cilwd)
segments(ppx-smidge, env[,2], ppx+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = ppx, y = probs))
}
"rl.pot" <- function(x, ci = TRUE, cilwd = 1, a = 0, main = "Return Level Plot", xlab = "Return Period", ylab = "Return Level", ...)
{
rpstmfc <- c(1.001,10^(seq(0,3,len=200))[-1])
rlev <- qgpd(1/rpstmfc, loc = x$threshold, scale = x$scale,
shape = x$param["shape"], lower.tail = FALSE)
mfc <- x$npp * x$nhigh/length(x$data)
rps <- rpstmfc/mfc
ppx <- 1/(mfc * (1 - ppoints(x$nhigh, a = a)))
if(!ci) {
plot(ppx, sort(x$exceedances), log = "x", main =
main, xlab = xlab, ylab = ylab, ...)
lines(rps, rlev)
}
else {
samp <- rgpd(x$nhigh*99, loc = x$threshold,
scale = x$scale, shape = x$param["shape"])
samp <- matrix(samp, x$nhigh, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
rs <- sort(x$exceedances)
matplot(ppx, cbind(rs,env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, log = "x", ...)
lines(rps, rlev)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], log10(ppx), xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(ppx*exp(-smidge), env[,1], ppx*exp(smidge),
env[,1], lwd = cilwd)
segments(ppx*exp(-smidge), env[,2], ppx*exp(smidge),
env[,2], lwd = cilwd)
}
invisible(list(x = rps, y = rlev))
}
"dens.pot" <- function(x, adjust = 1, nplty = 2, jitter = FALSE, main = "Density Plot", xlab = "Quantile", ylab = "Density", ...)
{
xlimit <- range(x$exceedances)
xlimit[2] <- xlimit[2] + diff(xlimit) * 0.075
xvec <- seq(xlimit[1], xlimit[2], length = 100)
dens <- dgpd(xvec, loc = x$threshold, scale = x$scale,
shape = x$param["shape"])
plot(spline(xvec, dens), main = main, xlab = xlab, ylab = ylab,
type = "l", ...)
if(jitter) rug(jitter(x$exceedances))
else rug(x$exceedances)
flipexceed <- c(x$exceedances, 2*x$threshold - x$exceedances)
flipdens <- density(flipexceed, adjust = adjust, from = xlimit[1],
to = xlimit[2])
flipdens$y <- 2*flipdens$y
lines(flipdens, lty = nplty)
invisible(list(x = xvec, y = dens))
}
### Bivariate EVD Models ###
"plot.bvevd" <- function(x, mar = 0, which = 1:6, main,
ask = nb.fig < length(which) && dev.interactive(), ci = TRUE,
cilwd = 1, a = 0, grid = 50, legend = TRUE, nplty = 2,
blty = 3, method = "cfg", convex = FALSE, rev = FALSE,
p = seq(0.75, 0.95, 0.05), mint = 1, half = FALSE, ...)
{
if (!inherits(x, "bvevd"))
stop("Use only with `bvevd' objects")
nb.fig <- prod(par("mfcol"))
if(mar == 1 || mar == 2) {
indx <- paste(c("loc","scale","shape"), as.character(mar), sep="")
tdata <- na.omit(x$tdata[, mar])
n <- length(tdata)
param <- x$param[indx]
names(param) <- c("loc","scale","shape")
gev.mar <- structure(list(param = param, tdata = tdata, n = n,
loc = param["loc"]), class = c("gev", "uvevd", "evd"))
if(missing(which)) which <- 1:4
plot(gev.mar, which = which, main = main, ask = ask, ci = ci,
cilwd = cilwd, ...)
return(invisible(x))
}
if (!is.numeric(which) || any(which < 1) || any(which > 6))
stop("`which' must be in 1:6")
show <- rep(FALSE, 6)
show[which] <- TRUE
if(missing(main)) {
main <- c("Conditional Plot One", "Conditional Plot Two",
"Density Plot", "Dependence Function", "Quantile Curves",
"Spectral Density")
}
else {
if(length(main) != length(which))
stop("number of plot titles is not correct")
main2 <- character(6)
main2[show] <- main
main <- main2
}
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
if (show[1]) {
bvcpp(x, mar = 1, ci = ci, cilwd = cilwd, a = a, main = main[1],
xlim = c(0,1), ylim = c(0,1), ...)
}
if (show[2]) {
bvcpp(x, mar = 2, ci = ci, cilwd = cilwd, a = a, main = main[2],
xlim = c(0,1), ylim = c(0,1), ...)
}
if (show[3]) {
bvdens(x, grid = grid, legend = legend, main = main[3], ...)
}
if (show[4]) {
bvdp(x, nplty = nplty, blty = blty, method = method,
convex = convex, rev = rev, main = main[4], ...)
}
if (show[5]) {
bvqc(x, p = p, mint = mint, legend = legend, main = main[5], ...)
}
if (show[6]) {
bvh(x, half = half, main = main[6], ...)
}
invisible(x)
}
"bvcpp" <- function (x, ...) UseMethod("bvcpp")
"bvdens" <- function (x, ...) UseMethod("bvdens")
"bvdp" <- function (x, ...) UseMethod("bvdp")
"bvqc" <- function (x, ...) UseMethod("bvqc")
"bvh" <- function (x, ...) UseMethod("bvh")
"bvcpp.bvevd" <- function(x, mar = 2, ci = TRUE, cilwd = 1, a = 0, main = "Conditional Probability Plot", xlab = "Empirical", ylab = "Model", ...)
{
data <- x$tdata
mle.m1 <- x$param[c("loc1","scale1","shape1")]
mle.m2 <- x$param[c("loc2","scale2","shape2")]
data[,1:2] <- exp(-mtransform(data[,1:2], list(mle.m1, mle.m2)))
narow <- is.na(data[,1]) | is.na(data[,2])
data <- data[!narow,, drop=FALSE]
n <- nrow(data)
ppx <- ppoints(n, a = a)
if(x$model %in% c("log","hr","neglog")) {
probs <- ccbvevd(data, mar = mar, dep = x$param["dep"],
model = x$model)}
if(x$model %in% c("alog","aneglog"))
probs <- ccbvevd(data, mar = mar, dep = x$param["dep"],
asy = x$param[c("asy1","asy2")], model = x$model)
if(x$model %in% c("bilog","negbilog","ct","amix"))
probs <- ccbvevd(data, mar = mar, alpha = x$param["alpha"],
beta = x$param["beta"], model = x$model)
probs <- sort(probs)
if(!ci) {
plot(ppx, probs, main = main, xlab = xlab, ylab = ylab, ...)
abline(0, 1)
}
else {
samp <- runif(n*99)
samp <- matrix(samp, n, 99)
samp <- apply(samp, 2, sort)
samp <- apply(samp, 1, sort)
env <- t(samp[c(3,97),])
matplot(ppx, cbind(probs, env), main = main, xlab = xlab,
ylab = ylab, type = "pnn", pch = 4, ...)
xyuser <- par("usr")
smidge <- min(diff(c(xyuser[1], ppx, xyuser[2])))/2
smidge <- max(smidge, (xyuser[2] - xyuser[1])/200)
segments(ppx-smidge, env[,1], ppx+smidge, env[,1], lwd = cilwd)
segments(ppx-smidge, env[,2], ppx+smidge, env[,2], lwd = cilwd)
abline(0, 1)
}
invisible(list(x = ppx, y = probs))
}
"bvdens.bvevd" <- function(x, grid = 50, legend = TRUE, pch = 1, main = "Density Plot", xlab = colnames(x$data)[1], ylab = colnames(x$data)[2], ...)
{
xlimit <- range(x$tdata[,1], na.rm = TRUE)
ylimit <- range(x$tdata[,2], na.rm = TRUE)
xlimit[1] <- xlimit[1] - diff(xlimit) * 0.1
xlimit[2] <- xlimit[2] + diff(xlimit) * 0.1
ylimit[1] <- ylimit[1] - diff(ylimit) * 0.1
ylimit[2] <- ylimit[2] + diff(ylimit) * 0.1
xvec <- seq(xlimit[1], xlimit[2], length = grid)
yvec <- seq(ylimit[1], ylimit[2], length = grid)
xyvals <- expand.grid(xvec, yvec)
mar1 <- x$param[c("loc1","scale1","shape1")]
mar2 <- x$param[c("loc2","scale2","shape2")]
if(x$model %in% c("log","hr","neglog"))
dfunargs <- list(dep = x$param["dep"], mar1 = mar1, mar2 = mar2)
if(x$model %in% c("alog","aneglog"))
dfunargs <- list(dep = x$param["dep"],
asy = x$param[c("asy1","asy2")], mar1 = mar1, mar2 = mar2)
if(x$model %in% c("bilog","negbilog","ct","amix"))
dfunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"],
mar1 = mar1, mar2 = mar2)
dfunargs <- c(list(x = xyvals, model = x$model), dfunargs)
dens <- do.call("dbvevd", dfunargs)
dens <- matrix(dens, nrow = grid, ncol = grid)
contour(xvec, yvec, dens, main = main, xlab = xlab, ylab = ylab, ...)
data <- x$tdata
if(ncol(data) == 2) points(data, pch = pch)
if(ncol(data) == 3) {
si <- data[,3] ; data <- data[,1:2]
points(data[is.na(si),], pch = 4)
points(data[si & !is.na(si),], pch = 16)
points(data[!si & !is.na(si),], pch = 1)
legwrd <- c("True","False","Unknown") ; legpch <- c(16,1,4)
if(!any(is.na(si))) {legwrd <- legwrd[1:2] ; legpch <- legpch[1:2]}
if(legend) legend(xlimit[1], ylimit[2], legwrd, pch = legpch)
}
invisible(list(x = xyvals, y = dens))
}
"bvdp.bvevd" <- function(x, method = "cfg", convex = FALSE, rev = FALSE, add = FALSE, lty = 1, nplty = 2, blty = 3, main = "Dependence Function", xlab = "t", ylab = "A(t)", ...)
{
if(ncol(x$data) == 3) nplty <- 0
abvnonpar(data = x$data[,1:2], nsloc1 = x$nsloc1, nsloc2 = x$nsloc2,
epmar = FALSE, method = method, convex = convex, rev = rev,
plot = TRUE, lty = nplty, blty = blty, main = main, xlab = xlab,
ylab = ylab, add = add, ...)
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(rev = rev, add = TRUE, lty = lty, model = x$model),
afunargs)
do.call("abvevd", afunargs)
invisible(x)
}
"bvh.bvevd" <- function(x, half = FALSE, add = FALSE, lty = 1, main = "Spectral Density", xlab = "t", ylab = "h(t)", ...)
{
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(half = half, add = add, plot = TRUE, lty = lty, main = main,
xlab = xlab, ylab = ylab, model = x$model), afunargs)
do.call("hbvevd", afunargs)
invisible(x)
}
"bvqc.bvevd"<-
function(x, p = seq(0.75, 0.95, 0.05), mint = 1, add = FALSE,
legend = TRUE, lty = 1, lwd = 1, col = 1, xlim = range(x$tdata[,1],
na.rm = TRUE), ylim = range(x$tdata[,2], na.rm = TRUE), xlab =
colnames(x$data)[1], ylab = colnames(x$data)[2], ...)
{
if(mode(p) != "numeric" || any(p <= 0) || any(p >= 1))
stop("`p' must be a vector of probabilities")
nom <- 100
om <- seq(0, 1, length = nom)
# Calculate A(t)
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(x = om, plot = FALSE, model = x$model), afunargs)
aom <- do.call("abvevd", afunargs)
# End Calculate A(t)
np <- length(p)
qct <- list()
p <- p^mint
if(add) {
xlim <- par("usr")[1:2]
ylim <- par("usr")[1:2]
if(par("xlog")) xlim <- 10^xlim
if(par("ylog")) ylim <- 10^ylim
}
for(i in 1:np) {
qct[[i]] <- -cbind(om/aom * log(p[i]), (1-om)/aom * log(p[i]))
mar1 <- x$param[c("loc1","scale1","shape1")]
mar2 <- x$param[c("loc2","scale2","shape2")]
qct[[i]] <- mtransform(qct[[i]], list(mar1, mar2), inv = TRUE)
qct[[i]][1,1] <- 1.5 * xlim[2]
qct[[i]][nom,2] <- 1.5 * ylim[2]
}
if(!add) {
if(is.null(xlab)) xlab <- ""
if(is.null(ylab)) ylab <- ""
if(ncol(x$tdata) == 2) {
plot(x$tdata[,1:2], xlab = xlab, ylab = ylab, xlim = xlim,
ylim = ylim, ...)
}
if(ncol(x$tdata) == 3) {
plot(x$tdata[,1:2], xlab = xlab, ylab = ylab, xlim = xlim,
ylim = ylim, type = "n", ...)
si <- x$tdata[,3] ; data <- x$tdata[,1:2]
points(data[is.na(si),], pch = 4)
points(data[si & !is.na(si),], pch = 16)
points(data[!si & !is.na(si),], pch = 1)
legwrd <- c("True","False","Unknown") ; legpch <- c(16,1,4)
if(!any(is.na(si))) {legwrd <- legwrd[1:2] ; legpch <- legpch[1:2]}
if(legend) legend(xlim[1], ylim[2], legwrd, pch = legpch)
}
for(i in 1:np) lines(qct[[i]], lty = lty, lwd = lwd, col = col)
}
else {
for(i in 1:np) lines(qct[[i]], lty = lty, lwd = lwd, col = col)
}
return(invisible(qct))
}
### Bivariate POT Models ###
"plot.bvpot" <- function(x, mar = 0, which = 1:4, main,
ask = nb.fig < length(which) && dev.interactive(), grid = 50,
above = FALSE, levels = NULL, tlty = 1, blty = 3, rev = FALSE,
p = seq(0.75, 0.95, 0.05), half = FALSE, ...)
{
if (!inherits(x, "bvpot"))
stop("Use only with `bvpot' objects")
nb.fig <- prod(par("mfcol"))
if(mar == 1 || mar == 2) {
indx <- paste(c("scale","shape"), as.character(mar), sep="")
param <- x$param[indx]
names(param) <- c("scale","shape")
mdata <- x$data[, mar]
mth <- x$threshold[mar]
mexceed <- mdata[mdata > mth & !is.na(mdata)]
pot.mar <- structure(list(param = param, data = mdata,
threshold = mth, exceedances = mexceed, nhigh = length(mexceed),
npp = length(mdata), scale = param["scale"]),
class = c("pot", "uvevd", "evd"))
if(missing(which)) which <- 1:4
plot(pot.mar, which = which, main = main, ask = ask, ...)
return(invisible(x))
}
if (!is.numeric(which) || any(which < 1) || any(which > 4))
stop("`which' must be in 1:4")
show <- rep(FALSE, 4)
show[which] <- TRUE
if(missing(main)) {
main <- c("Density Plot", "Dependence Function", "Quantile Curves",
"Spectral Density")
}
else {
if(length(main) != length(which))
stop("number of plot titles is not correct")
main2 <- character(4)
main2[show] <- main
main <- main2
}
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
if (show[1]) {
bvdens(x, grid = grid, above = above, levels = levels,
tlty = tlty, main = main[1], ...)
}
if (show[2]) {
bvdp(x, blty = blty, rev = rev, main = main[2], ...)
}
if (show[3]) {
bvqc(x, p = p, above = above, tlty = tlty, main = main[3], ...)
}
if (show[4]) {
bvh(x, half = half, main = main[4], ...)
}
invisible(x)
}
"bvdens.bvpot" <- function(x, grid = 50, above = FALSE, tlty = 1, levels = NULL, main = "Density Plot", pch = 1, xlab = colnames(x$data)[1], ylab = colnames(x$data)[2], xlim, ylim, ...)
{
xlimit <- range(x$data[,1], na.rm = TRUE)
ylimit <- range(x$data[,2], na.rm = TRUE)
xlimit[1] <- xlimit[1] - diff(xlimit) * 0.1
xlimit[2] <- xlimit[2] + diff(xlimit) * 0.1
ylimit[1] <- ylimit[1] - diff(ylimit) * 0.1
ylimit[2] <- ylimit[2] + diff(ylimit) * 0.1
if(missing(xlim)) xlim <- xlimit
if(missing(ylim)) ylim <- ylimit
u1 <- x$threshold[1]
u2 <- x$threshold[2]
if((xlimit[2] <= u1) || (ylimit[2] <= u2))
stop("x and y limits must contain thresholds")
xvec <- seq(u1, xlimit[2], length = grid)
yvec <- seq(u2, ylimit[2], length = grid)
xyvals <- txyvals <- fxyvals <- expand.grid(xvec, yvec)
mar1 <- x$param[c("scale1","shape1")]
mar2 <- x$param[c("scale2","shape2")]
# Transform exceedance grid to frechet margins
txyvals[,1] <- mtransform(xyvals[,1], c(u1, mar1))
txyvals[,2] <- mtransform(xyvals[,2], c(u2, mar2))
lambda <- x$nat[1:2]/(nrow(x$data) + 1)
fxyvals[,1] <- -1/log(1 - lambda[1] * txyvals[,1])
fxyvals[,2] <- -1/log(1 - lambda[2] * txyvals[,2])
# End transform
if(x$model %in% c("log","hr","neglog"))
dfunargs <- list(dep = x$param["dep"], mar1 = c(1,1,1), mar2 = c(1,1,1))
if(x$model %in% c("alog","aneglog"))
dfunargs <- list(dep = x$param["dep"],
asy = x$param[c("asy1","asy2")], mar1 = c(1,1,1), mar2 = c(1,1,1))
if(x$model %in% c("bilog","negbilog","ct","amix"))
dfunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"],
mar1 = c(1,1,1), mar2 = c(1,1,1))
dfunargs <- c(list(x = fxyvals, model = x$model), dfunargs)
# Jacobian terms
txyvals[,1] <- fxyvals[,1]^2 * txyvals[,1]^(1 + mar1[2]) /
(1 - lambda[1] * txyvals[,1])
txyvals[,1] <- lambda[1] * txyvals[,1] / mar1[1]
txyvals[,2] <- fxyvals[,2]^2 * txyvals[,2]^(1 + mar2[2]) /
(1 - lambda[2] * txyvals[,2])
txyvals[,2] <- lambda[2] * txyvals[,2] / mar2[1]
# End jacobian terms
dens <- do.call("dbvevd", dfunargs)
dens <- dens * txyvals[,1] * txyvals[,2]
dens <- matrix(dens, nrow = grid, ncol = grid)
if(is.null(levels)) {
levels <- seq(10, 40, length = 4)
levels <- dens[cbind(levels, levels)]
levels <- signif(levels, 1)
}
contour(xvec, yvec, dens, main = main, xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim, levels = levels, ...)
abline(v = u1, lty = tlty); abline(h = u2, lty = tlty)
data <- x$data
if(above) {
above <- (data[,1] > u1) & (data[,2] > u2)
data <- data[above,]
}
points(data, pch = pch)
invisible(list(x = xyvals, y = dens))
}
"bvdp.bvpot" <- function(x, rev = FALSE, add = FALSE, lty = 1, blty = 3, main = "Dependence Function", xlab = "t", ylab = "A(t)", ...)
{
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(rev = rev, add = add, plot = TRUE, lty = lty, blty = blty,
main = main, xlab = xlab, ylab = ylab, model = x$model), afunargs)
do.call("abvevd", afunargs)
invisible(x)
}
"bvqc.bvpot"<-
function(x, p = seq(0.75, 0.95, 0.05), above = FALSE, tlty = 1,
add = FALSE, lty = 1, lwd = 1, col = 1, xlim =
range(x$data[,1], na.rm = TRUE), ylim =
range(x$data[,2], na.rm = TRUE), xlab = colnames(x$data)[1],
ylab = colnames(x$data)[2], ...)
{
if(mode(p) != "numeric" || any(p <= 0) || any(p >= 1))
stop("`p' must be a vector of probabilities")
nom <- 100
om <- seq(0, 1, length = nom)
# Calculate A(t)
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(x = om, plot = FALSE, model = x$model), afunargs)
aom <- do.call("abvevd", afunargs)
# End Calculate A(t)
np <- length(p)
qct <- list()
if(add) {
xlim <- par("usr")[1:2]
ylim <- par("usr")[1:2]
if(par("xlog")) xlim <- 10^xlim
if(par("ylog")) ylim <- 10^ylim
}
u1 <- x$threshold[1]
u2 <- x$threshold[2]
lambda <- x$nat[1:2]/(nrow(x$data) + 1)
for(i in 1:np) {
qct[[i]] <- cbind((1 - p[i]^(om/aom))/lambda[1],
(1 - p[i]^((1-om)/aom))/lambda[2])
mar1 <- c(u1, x$param[c("scale1","shape1")])
mar2 <- c(u2, x$param[c("scale2","shape2")])
qct[[i]] <- mtransform(qct[[i]], list(mar1, mar2), inv = TRUE)
qct[[i]][1,1] <- 1.5 * xlim[2]
qct[[i]][nom,2] <- 1.5 * ylim[2]
}
data <- x$data
if(above) {
above <- (data[,1] > u1) & (data[,2] > u2)
data <- data[above,]
}
if(!add) {
if(is.null(xlab)) xlab <- ""
if(is.null(ylab)) ylab <- ""
plot(data, xlab = xlab, ylab = ylab, xlim = xlim,
ylim = ylim, ...)
abline(v = u1, lty = tlty); abline(h = u2, lty = tlty)
for(i in 1:np) lines(qct[[i]], lty = lty, lwd = lwd, col = col)
}
else {
for(i in 1:np) lines(qct[[i]], lty = lty, lwd = lwd, col = col)
}
return(invisible(qct))
}
"bvh.bvpot" <- function(x, half = FALSE, add = FALSE, lty = 1, main = "Spectral Density", xlab = "t", ylab = "h(t)", ...)
{
if(x$model %in% c("log","hr","neglog"))
afunargs <- list(dep = x$param["dep"])
if(x$model %in% c("alog","aneglog"))
afunargs <- list(dep = x$param["dep"], asy = x$param[c("asy1","asy2")])
if(x$model %in% c("bilog","negbilog","ct","amix"))
afunargs <- list(alpha = x$param["alpha"], beta = x$param["beta"])
afunargs <- c(list(half = half, add = add, plot = TRUE, lty = lty,
main = main, xlab = xlab, ylab = ylab, model = x$model), afunargs)
do.call("hbvevd", afunargs)
invisible(x)
}
### Documented Ancillary Functions ###
"mtransform"<-
function(x, p, inv = FALSE, drp = FALSE)
{
if(is.list(p)) {
if(is.null(dim(x)) && length(x) != length(p))
stop(paste("`p' must have", length(x), "elements"))
if(!is.null(dim(x)) && ncol(x) != length(p))
stop(paste("`p' must have", ncol(x), "elements"))
if(is.null(dim(x))) dim(x) <- c(1, length(p))
for(i in 1:length(p))
x[,i] <- Recall(x[,i], p[[i]], inv = inv)
if(ncol(x) == 1 || (nrow(x) == 1 && drp)) x <- drop(x)
return(x)
}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
p <- matrix(t(p), nrow = nrow(x), ncol = 3, byrow = TRUE)
if(min(p[,2]) <= 0) stop("invalid marginal scale")
gumind <- (p[,3] == 0)
nzshapes <- p[!gumind,3]
if(!inv) {
x <- (x - p[,1])/p[,2]
x[gumind, ] <- exp(-x[gumind, ])
if(any(!gumind))
x[!gumind, ] <- pmax(1 + nzshapes*x[!gumind, ], 0)^(-1/nzshapes)
}
else {
x[gumind, ] <- p[gumind,1] - p[gumind,2] * log(x[gumind, ])
x[!gumind, ] <- p[!gumind,1] + p[!gumind,2] *
(x[!gumind, ]^(-nzshapes) - 1)/nzshapes
}
if(ncol(x) == 1 || (nrow(x) == 1 && drp)) x <- drop(x)
x
}
"ccbvevd" <- function(x, mar = 2, dep, asy = c(1, 1), alpha, beta, model =
c("log", "alog", "hr", "neglog", "aneglog", "bilog", "negbilog", "ct",
"amix"), lower.tail = TRUE)
{
if(min(x[,1:2]) <= 0 || max(x[,1:2]) >= 1)
stop("x must contain values in (0,1)")
model <- match.arg(model)
m1 <- c("bilog", "negbilog", "ct", "amix")
m2 <- c(m1, "log", "hr", "neglog")
m3 <- c("log", "alog", "hr", "neglog", "aneglog")
if((model %in% m1) && !missing(dep))
warning("ignoring `dep' argument")
if((model %in% m2) && !missing(asy))
warning("ignoring `asy' argument")
if((model %in% m3) && !missing(alpha))
warning("ignoring `alpha' argument")
if((model %in% m3) && !missing(beta))
warning("ignoring `beta' argument")
if(model %in% m1) dep <- 1
if(model %in% m3) alpha <- beta <- 1
imodel <- match(model, c("log","alog","hr","neglog","aneglog",
"bilog","negbilog","ct","amix"))
n <- nrow(x)
if(ncol(x) == 2) {
ccop <- .C(C_ccop, as.double(x[,1]), as.double(x[,2]), as.integer(mar),
as.double(dep), as.double(asy[1]), as.double(asy[2]), as.double(alpha),
as.double(beta), as.integer(n), as.integer(imodel), ccop = double(n))$ccop
}
if(ncol(x) == 3) {
"dbvevd.case" <- function(x1, x2, case, mar, dep, asy, alpha, beta)
{
n <- max(length(x1), length(x2))
x1 <- rep(-1/log(x1), length = n)
x2 <- rep(-1/log(x2), length = n)
case <- rep(case, length = n)
mpar <- as.double(1)
split <- as.integer(1)
if(mar == 1) {
tmp <- x1; x1 <- x2; x2 <- tmp
if(model %in% c("alog","aneglog")) asy <- rev(asy)
if(model %in% c("bilog","negbilog","ct"))
{ tmp <- alpha; alpha <- beta; beta <- tmp }
if(model == "amix")
{ alpha <- alpha + 3*beta; beta <- -beta }
}
nl <- switch(model,
log = .C(C_nlbvlog, as.double(x1), as.double(x2), n, case,
as.double(dep), rep(mpar,n), mpar, mpar, rep(mpar,n), mpar,
mpar, split, dns = double(n))$dns,
alog = .C(C_nlbvalog, as.double(x1), as.double(x2), n, case,
as.double(dep), as.double(asy[1]), as.double(asy[2]), rep(mpar,n),
mpar, mpar, rep(mpar,n), mpar, mpar, split, dns = double(n))$dns,
hr = .C(C_nlbvhr, as.double(x1), as.double(x2), n, case,
as.double(dep), rep(mpar,n), mpar, mpar, rep(mpar,n), mpar,
mpar, split, dns = double(n))$dns,
neglog = .C(C_nlbvneglog, as.double(x1), as.double(x2), n, case,
as.double(dep), rep(mpar,n), mpar, mpar, rep(mpar,n), mpar,
mpar, split, dns = double(n))$dns,
aneglog = .C(C_nlbvaneglog, as.double(x1), as.double(x2), n, case,
as.double(dep), as.double(asy[1]), as.double(asy[2]), rep(mpar,n),
mpar, mpar, rep(mpar,n), mpar, mpar, split, dns = double(n))$dns,
bilog = .C(C_nlbvbilog, as.double(x1), as.double(x2), n, case,
as.double(alpha), as.double(beta), rep(mpar,n), mpar, mpar,
rep(mpar,n), mpar, mpar, split, dns = double(n))$dns,
negbilog = .C(C_nlbvnegbilog, as.double(x1), as.double(x2), n, case,
as.double(alpha), as.double(beta), rep(mpar,n), mpar, mpar,
rep(mpar,n), mpar, mpar, split, dns = double(n))$dns,
ct = .C(C_nlbvct, as.double(x1), as.double(x2), n, case,
as.double(alpha), as.double(beta), rep(mpar,n), mpar, mpar,
rep(mpar,n), mpar, mpar, split, dns = double(n))$dns,
amix = .C(C_nlbvamix, as.double(x1), as.double(x2), n, case,
as.double(alpha), as.double(beta), rep(mpar,n), mpar, mpar,
rep(mpar,n), mpar, mpar, split, dns = double(n))$dns)
jac.alt <- 1/x1 + 1/x2 + 2*log(x1 * x2)
exp(jac.alt - nl)
}
ccop <- numeric(n)
case <- as.integer(x[,3])
eps <- .Machine$double.eps^0.5
if(mar == 2) { fm <- x[,1] ; cm <- x[,2] }
if(mar == 1) { fm <- x[,2] ; cm <- x[,1] }
for(i in 1:n) {
if(is.na(case[i])) {
ccop[i] <- .C(C_ccop, as.double(x[i,1]), as.double(x[i,2]),
as.integer(mar), as.double(dep), as.double(asy[1]),
as.double(asy[2]), as.double(alpha), as.double(beta),
as.integer(1), as.integer(imodel), ccop = double(1))$ccop
}
else {
den <- integrate("dbvevd.case", eps, 1-eps, x2 = cm[i], case =
case[i], mar=mar, dep=dep, asy=asy, alpha=alpha, beta=beta)$value
num <- integrate("dbvevd.case", eps, fm[i], x2 = cm[i], case =
case[i], mar=mar, dep=dep, asy=asy, alpha=alpha, beta=beta)$value
ccop[i] <- num/den
}
}
}
if(!lower.tail) ccop <- 1 - ccop
ccop
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.