Nothing
require("fitdistrplus")
visualize <- FALSE # TRUE for manual tests with visualization of results
nsample <- 10000
nsample <- 10
# (1) tests with the Burr distribution (three parameters)
#
if(any(installed.packages()[, "Package"] == "actuar"))
{
require(actuar)
data(endosulfan)
ATV <-endosulfan$ATV
require("actuar")
fBurr <- fitdist(ATV, "burr", start = list(shape1 = 0.3, shape2 = 1, rate = 1))
llplot(fBurr)
fBurr2 <- fitdist(ATV, "burr", start = list(shape1 = 0.3, shape2 = 1),
fix.arg = list(rate = 1.5))
llplot(fBurr2)
fBurr3 <- fitdist(ATV, "burr", start = list(shape1 = 0.3, rate = 1),
fix.arg = list(shape2 = 1.5))
llplot(fBurr3)
}
# (2) An example on discrete data with or without weights
#
set.seed(1234)
x <- rpois(nsample, 10)
xtab <- table(x)
xval <- sort(unique(x))
f1 <- fitdist(x, "pois")
f2 <- fitdist(xval, "pois", weights = xtab)
f1$estimate
f2$estimate # should give the same
llplot(f1, fit.show = TRUE)
llplot(f2, fit.show = TRUE) # should give the same
llplot(f1, loglik = FALSE, fit.show = TRUE)
llplot(f2, loglik = FALSE,fit.show = TRUE) # should give the same
# (3) An example on censored data with or without weights
#
if(visualize)
{
data(salinity)
salinity.unique <- unique(salinity)
string.unique <- paste(salinity.unique$left, salinity.unique$right)
string.salinity <- paste(salinity$left, salinity$right)
nobs <- nrow(salinity.unique)
salinity.weights <- numeric(nobs)
for (i in 1:nobs)
{
salinity.weights[i] <- length(which(string.salinity == string.unique[i]))
}
cbind(salinity.unique, salinity.weights)
(fa <- fitdistcens(salinity, "lnorm"))
(fb <- fitdistcens(salinity.unique, "lnorm", weights = salinity.weights))
llplot(fa, fit.show = TRUE)
llplot(fb, fit.show = TRUE) # should give the same
llplot(fa, fit.show = TRUE, loglik = FALSE)
llplot(fb, fit.show = TRUE, loglik = FALSE) # should give the same
}
# (4) An example with NaN stderror
#
if(visualize)
{
claims <- read.csv("~/Documents/recherche-enseignement/code/R/riskassessment/bug/20250107/Claims.csv")
x <- claims$UltimateCost/1000
fit_B_mle <- fitdist(x, "burr", method="mle", lower=0)
llplot(fit_B_mle, expansion = 10, fit.show = TRUE)
fit_IB_mle <- fitdist(x, "invburr", method="mle", lower=0) # converges to a wrong solution
llplot(fit_IB_mle, expansion = 10, fit.show = TRUE)
fit_IB_mle$estimate[1] <- NaN
llplot(fit_IB_mle, expansion = 10, fit.show = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.