R/tbats.R

Defines functions tbats.components plot.tbats print.tbats fitted.tbats calcFTest makeSingleFourier filterTBATSSpecifics parFitSpecificTBATS parFilterTBATSSpecifics tbats

Documented in fitted.tbats plot.tbats print.tbats tbats tbats.components

# Author: srazbash
###############################################################################


#' TBATS model (Exponential smoothing state space model with Box-Cox
#' transformation, ARMA errors, Trend and Seasonal components)
#'
#' Fits a TBATS model applied to \code{y}, as described in De Livera, Hyndman &
#' Snyder (2011). Parallel processing is used by default to speed up the
#' computations.
#'
#' @aliases as.character.tbats print.tbats
#'
#' @param y The time series to be forecast. Can be \code{numeric}, \code{msts}
#' or \code{ts}. Only univariate time series are supported.
#' @param use.box.cox \code{TRUE/FALSE} indicates whether to use the Box-Cox
#' transformation or not. If \code{NULL} then both are tried and the best fit
#' is selected by AIC.
#' @param use.trend \code{TRUE/FALSE} indicates whether to include a trend or
#' not. If \code{NULL} then both are tried and the best fit is selected by AIC.
#' @param use.damped.trend \code{TRUE/FALSE} indicates whether to include a
#' damping parameter in the trend or not. If \code{NULL} then both are tried
#' and the best fit is selected by AIC.
#' @param seasonal.periods If \code{y} is \code{numeric} then seasonal periods
#' can be specified with this parameter.
#' @param use.arma.errors \code{TRUE/FALSE} indicates whether to include ARMA
#' errors or not. If \code{TRUE} the best fit is selected by AIC. If
#' \code{FALSE} then the selection algorithm does not consider ARMA errors.
#' @param use.parallel \code{TRUE/FALSE} indicates whether or not to use
#' parallel processing.
#' @param num.cores The number of parallel processes to be used if using
#' parallel processing. If \code{NULL} then the number of logical cores is
#' detected and all available cores are used.
#' @param bc.lower The lower limit (inclusive) for the Box-Cox transformation.
#' @param bc.upper The upper limit (inclusive) for the Box-Cox transformation.
#' @param biasadj Use adjusted back-transformed mean for Box-Cox
#' transformations. If TRUE, point forecasts and fitted values are mean
#' forecast. Otherwise, these points can be considered the median of the
#' forecast densities.
#' @param model Output from a previous call to \code{tbats}. If model is
#' passed, this same model is fitted to \code{y} without re-estimating any
#' parameters.
#' @param ... Additional arguments to be passed to \code{auto.arima} when
#' choose an ARMA(p, q) model for the errors. (Note that xreg will be ignored,
#' as will any arguments concerning seasonality and differencing, but arguments
#' controlling the values of p and q will be used.)
#' @return An object with class \code{c("tbats", "bats")}. The generic accessor
#' functions \code{fitted.values} and \code{residuals} extract useful features
#' of the value returned by \code{bats} and associated functions. The fitted
#' model is designated TBATS(omega, p,q, phi, <m1,k1>,...,<mJ,kJ>) where omega
#' is the Box-Cox parameter and phi is the damping parameter; the error is
#' modelled as an ARMA(p,q) process and m1,...,mJ list the seasonal periods
#' used in the model and k1,...,kJ are the corresponding number of Fourier
#' terms used for each seasonality.
#' @author Slava Razbash and Rob J Hyndman
#' @seealso \code{\link{tbats.components}}.
#' @references De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011),
#' Forecasting time series with complex seasonal patterns using exponential
#' smoothing, \emph{Journal of the American Statistical Association},
#' \bold{106}(496), 1513-1527.
#' @keywords ts
#' @examples
#'
#' \dontrun{
#' fit <- tbats(USAccDeaths)
#' plot(forecast(fit))
#'
#' taylor.fit <- tbats(taylor)
#' plot(forecast(taylor.fit))}
#'
#' @export
tbats <- function(y, use.box.cox=NULL, use.trend=NULL, use.damped.trend=NULL,
                  seasonal.periods=NULL, use.arma.errors=TRUE, use.parallel=length(y) > 1000, num.cores=2,
                  bc.lower=0, bc.upper=1, biasadj=FALSE, model=NULL, ...) {
  if (!is.numeric(y) || NCOL(y) > 1) {
    stop("y should be a univariate time series")
  }

  seriesname <- deparse(substitute(y))

  origy <- y
  attr_y <- attributes(origy)

  # Get seasonal periods
  if (is.null(seasonal.periods)) {
    if ("msts" %in% class(y)) {
      seasonal.periods <- sort(attr(y, "msts"))
    } else if ("ts" %in% class(y)) {
      seasonal.periods <- frequency(y)
    } else {
      y <- as.ts(y)
      seasonal.periods <- 1
    }
  }
  else {
    # Add ts attributes
    if (!("ts" %in% class(y))) {
      y <- msts(y, seasonal.periods)
    }
  }
  seasonal.periods <- unique(pmax(seasonal.periods, 1))
  if (all(seasonal.periods == 1)) {
    seasonal.periods <- NULL
  }

  ny <- length(y)
  y <- na.contiguous(y)
  if (ny != length(y)) {
    warning("Missing values encountered. Using longest contiguous portion of time series")
    if (!is.null(attr_y$tsp)) {
      attr_y$tsp[1:2] <- range(time(y))
    }
  }

  # Refit model if available
  if (!is.null(model)) {
    if (is.element("tbats", class(model))) {
      refitModel <- try(fitPreviousTBATSModel(y, model = model), silent = TRUE)
    } else if (is.element("bats", class(model))) {
      refitModel <- bats(origy, model = model)
    }
    return(refitModel)
  }

  # Return constant model if required
  if (is.constant(y)) {
    fit <- list(
      y = y, x = matrix(y, nrow = 1, ncol = ny), errors = y * 0, fitted.values = y, seed.states = matrix(y[1]),
      AIC = -Inf, likelihood = -Inf, variance = 0, alpha = 0.9999, method = "TBATS", call = match.call()
    )
    return(structure(fit, class = "bats"))
  }

  # Check for observations are positive
  if (any((y <= 0))) {
    use.box.cox <- FALSE
  }

  # Fit non-seasonal model as a benchmark
  non.seasonal.model <- bats(
    as.numeric(y), use.box.cox = use.box.cox, use.trend = use.trend,
    use.damped.trend = use.damped.trend, use.arma.errors = use.arma.errors,
    use.parallel = use.parallel, num.cores = num.cores,
    bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj, ...
  )

  # If non-seasonal data, return the non-seasonal model
  if (is.null(seasonal.periods)) {
    non.seasonal.model$call <- match.call()
    attributes(non.seasonal.model$fitted.values) <- attributes(non.seasonal.model$errors) <- attributes(origy)
    non.seasonal.model$y <- origy
    return(non.seasonal.model)
  }
  else {
    seasonal.mask <- (seasonal.periods == 1)
    seasonal.periods <- seasonal.periods[!seasonal.mask]
  }

  if (is.null(use.box.cox)) {
    use.box.cox <- c(FALSE, TRUE)
  }
  if (any(use.box.cox)) {
    init.box.cox <- BoxCox.lambda(y, lower = bc.lower, upper = bc.upper)
  } else {
    init.box.cox <- NULL
  }
  if (is.null(use.trend)) {
    use.trend <- c(FALSE, TRUE)
  } else if (use.trend == FALSE) {
    use.damped.trend <- FALSE
  }
  if (is.null(use.damped.trend)) {
    use.damped.trend <- c(FALSE, TRUE)
  }
  # Set a vector of model params for later comparison
  model.params <- logical(length = 3)
  model.params[1] <- any(use.box.cox)
  model.params[2] <- any(use.trend)
  model.params[3] <- any(use.damped.trend)

  y <- as.numeric(y)
  n <- length(y)
  k.vector <- rep(1, length(seasonal.periods))

  if (use.parallel) {
    if (is.null(num.cores)) {
      num.cores <- detectCores(all.tests = FALSE, logical = TRUE)
    }
    clus <- makeCluster(num.cores)
  }

  best.model <- try(fitSpecificTBATS(
    y, use.box.cox = model.params[1], use.beta = model.params[2],
    use.damping = model.params[3], seasonal.periods = seasonal.periods,
    k.vector = k.vector, init.box.cox = init.box.cox,
    bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
  ), silent = TRUE)
  if (is.element("try-error", class(best.model))) {
    best.model <- list(AIC = Inf)
  }

  for (i in 1:length(seasonal.periods)) {
    if (seasonal.periods[i] == 2) {
      next
    }
    max.k <- floor(((seasonal.periods[i] - 1) / 2))
    if (i != 1) {
      current.k <- 2
      while (current.k <= max.k) {
        if (seasonal.periods[i] %% current.k != 0) {
          current.k <- current.k + 1
          next
        }
        latter <- seasonal.periods[i] / current.k

        if (any(((seasonal.periods[1:(i - 1)] %% latter) == 0))) {
          max.k <- current.k - 1
          break
        } else {
          current.k <- current.k + 1
        }
      }
    }

    if (max.k == 1) {
      next
    }
    if (max.k <= 6) {
      k.vector[i] <- max.k
      best.model$AIC <- Inf
      repeat {
        # old.k <- k.vector[i]
        # k.vector[i] <- k.vector[i]-1
        new.model <- try(
          fitSpecificTBATS(
            y, use.box.cox = model.params[1], use.beta = model.params[2],
            use.damping = model.params[3], seasonal.periods = seasonal.periods,
            k.vector = k.vector, init.box.cox = init.box.cox,
            bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
          ),
          silent = TRUE
        )
        if (is.element("try-error", class(new.model))) {
          new.model <- list(AIC = Inf)
        }

        if (new.model$AIC > best.model$AIC) {
          k.vector[i] <- k.vector[i] + 1
          break
        } else {
          if (k.vector[i] == 1) {
            break
          }
          k.vector[i] <- k.vector[i] - 1
          best.model <- new.model
        }
      }
      next
    } else {
      # Three different k vectors
      step.up.k <- k.vector
      step.down.k <- k.vector
      step.up.k[i] <- 7
      step.down.k[i] <- 5
      k.vector[i] <- 6
      # Fit three different models

      ### if(use.parallel) then do parallel
      if (use.parallel) {
        k.control.array <- rbind(step.up.k, step.down.k, k.vector)
        models.list <- clusterApplyLB(
          clus, c(1:3), parFitSpecificTBATS, y = y,
          box.cox = model.params[1], trend = model.params[2],
          damping = model.params[3], seasonal.periods = seasonal.periods,
          k.control.matrix = k.control.array, init.box.cox = init.box.cox,
          bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
        )
        up.model <- models.list[[1]]
        level.model <- models.list[[3]]
        down.model <- models.list[[2]]
      } else {
        up.model <- try(
          fitSpecificTBATS(
            y, use.box.cox = model.params[1],
            use.beta = model.params[2], use.damping = model.params[3],
            seasonal.periods = seasonal.periods, k.vector = step.up.k,
            init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
          ),
          silent = TRUE
        )
        if (is.element("try-error", class(up.model))) {
          up.model <- list(AIC = Inf)
        }
        level.model <- try(
          fitSpecificTBATS(
            y, use.box.cox = model.params[1], use.beta = model.params[2],
            use.damping = model.params[3], seasonal.periods = seasonal.periods,
            k.vector = k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
          ),
          silent = TRUE
        )
        if (is.element("try-error", class(level.model))) {
          level.model <- list(AIC = Inf)
        }
        down.model <- try(
          fitSpecificTBATS(
            y, use.box.cox = model.params[1], use.beta = model.params[2],
            use.damping = model.params[3], seasonal.periods = seasonal.periods,
            k.vector = step.down.k, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
          ),
          silent = TRUE
        )
        if (is.element("try-error", class(down.model))) {
          down.model <- list(AIC = Inf)
        }
      }
      # Decide the best model of the three and then follow that direction to find the optimal k
      aic.vector <- c(up.model$AIC, level.model$AIC, down.model$AIC)
      ## If shifting down
      if (min(aic.vector) == down.model$AIC) {
        best.model <- down.model
        k.vector[i] <- 5
        repeat{
          k.vector[i] <- k.vector[i] - 1
          down.model <- try(
            fitSpecificTBATS(
              y = y, use.box.cox = model.params[1], use.beta = model.params[2],
              use.damping = model.params[3], seasonal.periods = seasonal.periods,
              k.vector = k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj
            ),
            silent = TRUE
          )
          if (is.element("try-error", class(down.model))) {
            down.model <- list(AIC = Inf)
          }
          if (down.model$AIC > best.model$AIC) {
            k.vector[i] <- k.vector[i] + 1
            break
          } else {
            best.model <- down.model
          }
          if (k.vector[i] == 1) {
            break
          }
        }

        ## If staying level
      } else if (min(aic.vector) == level.model$AIC) {
        best.model <- level.model
        next
        ## If shifting up
      } else {
        best.model <- up.model
        k.vector[i] <- 7
        repeat {
          k.vector[i] <- k.vector[i] + 1
          up.model <- try(
            fitSpecificTBATS(y, model.params[1], model.params[2], model.params[3], seasonal.periods, k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
            silent = TRUE
          )
          if (is.element("try-error", class(up.model))) {
            up.model <- list(AIC = Inf)
          }
          if (up.model$AIC > best.model$AIC) {
            k.vector[i] <- k.vector[i] - 1
            break
          } else {
            best.model <- up.model
          }
          if (k.vector[i] == max.k) {
            break
          }
        }
      }
    }
  }
  aux.model <- best.model

  if (non.seasonal.model$AIC < best.model$AIC) {
    best.model <- non.seasonal.model
  }

  if ((length(use.box.cox) == 1) && use.trend[1] && (length(use.trend) == 1) && (length(use.damped.trend) == 1) && (use.parallel)) {
    # In the this case, there is only one alternative.
    use.parallel <- FALSE
    stopCluster(clus)
  } else if ((length(use.box.cox) == 1) && !use.trend[1] && (length(use.trend) == 1) && (use.parallel)) {
    # As above, in the this case, there is only one alternative.
    use.parallel <- FALSE
    stopCluster(clus)
  }

  if (use.parallel) {
    # Set up the control array
    control.array <- NULL
    for (box.cox in use.box.cox) {
      for (trend in use.trend) {
        for (damping in use.damped.trend) {
          if (!trend && damping) {
            next
          }
          control.line <- c(box.cox, trend, damping)
          if (!is.null(control.array)) {
            control.array <- rbind(control.array, control.line)
          } else {
            control.array <- control.line
          }
        }
      }
    }
    models.list <- clusterApplyLB(clus, c(1:nrow(control.array)), parFilterTBATSSpecifics, y = y, control.array = control.array, model.params = model.params, seasonal.periods = seasonal.periods, k.vector = k.vector, use.arma.errors = use.arma.errors, aux.model = aux.model, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj, ...)
    stopCluster(clus)
    ## Choose the best model
    #### Get the AICs
    aics <- numeric(nrow(control.array))
    for (i in 1:nrow(control.array)) {
      aics[i] <- models.list[[i]]$AIC
    }
    best.number <- which.min(aics)
    best.seasonal.model <- models.list[[best.number]]
    if (best.seasonal.model$AIC < best.model$AIC) {
      best.model <- best.seasonal.model
    }
  } else {
    for (box.cox in use.box.cox) {
      for (trend in use.trend) {
        for (damping in use.damped.trend) {
          if (all((model.params == c(box.cox, trend, damping)))) {
            new.model <- filterTBATSSpecifics(y, box.cox, trend, damping, seasonal.periods, k.vector, use.arma.errors, aux.model = aux.model, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj, ...)
          } else if (trend || !damping) {
            new.model <- filterTBATSSpecifics(y, box.cox, trend, damping, seasonal.periods, k.vector, use.arma.errors, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj, ...)
          }
          if (new.model$AIC < best.model$AIC) {
            best.model <- new.model
          }
        }
      }
    }
  }

  best.model$call <- match.call()
  attributes(best.model$fitted.values) <- attributes(best.model$errors) <- attr_y
  best.model$y <- origy
  best.model$series <- seriesname
  best.model$method <- "TBATS"
  return(best.model)
}

######################################################################################################################################
parFilterTBATSSpecifics <- function(control.number, y, control.array, model.params, seasonal.periods, k.vector, use.arma.errors, aux.model=NULL, init.box.cox=NULL, bc.lower=0, bc.upper=1, biasadj=FALSE, ...) {
  box.cox <- control.array[control.number, 1]
  trend <- control.array[control.number, 2]
  damping <- control.array[control.number, 3]
  if (!all((model.params == c(box.cox, trend, damping)))) {
    first.model <- try(
      fitSpecificTBATS(y, use.box.cox = box.cox, use.beta = trend, use.damping = damping, seasonal.periods = seasonal.periods, k.vector = k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
      silent = TRUE
    )
  } else {
    first.model <- aux.model
  }

  if (is.element("try-error", class(first.model))) {
    first.model <- list(AIC = Inf)
  }

  if (use.arma.errors) {
    suppressWarnings(arma <- try(auto.arima(as.numeric(first.model$errors), d = 0, ...), silent = TRUE))
    if (!is.element("try-error", class(arma))) {
      p <- arma$arma[1]
      q <- arma$arma[2]
      if ((p != 0) || (q != 0)) { # Did auto.arima() find any AR() or MA() coefficients?
        if (p != 0) {
          ar.coefs <- numeric(p)
        } else {
          ar.coefs <- NULL
        }
        if (q != 0) {
          ma.coefs <- numeric(q)
        } else {
          ma.coefs <- NULL
        }
        starting.params <- first.model$parameters

        second.model <- try(
          fitSpecificTBATS(y, use.box.cox = box.cox, use.beta = trend, use.damping = damping, seasonal.periods = seasonal.periods, k.vector = k.vector, ar.coefs = ar.coefs, ma.coefs = ma.coefs, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
          silent = TRUE
        )
        if (is.element("try-error", class(second.model))) {
          second.model <- list(AIC = Inf)
        }
        if (second.model$AIC < first.model$AIC) {
          return(second.model)
        } else {
          return(first.model)
        }
      } else { # Else auto.arima() did not find any AR() or MA()coefficients
        return(first.model)
      }
    } else {
      return(first.model)
    }
  } else {
    return(first.model)
  }
}

#################################################################################################
parFitSpecificTBATS <- function(control.number, y, box.cox, trend, damping, seasonal.periods, k.control.matrix, init.box.cox=NULL, bc.lower=0, bc.upper=1, biasadj=FALSE) {
  k.vector <- k.control.matrix[control.number, ]

  model <- try(
    fitSpecificTBATS(y, use.box.cox = box.cox, use.beta = trend, use.damping = damping, seasonal.periods = seasonal.periods, k.vector = k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
    silent = TRUE
  )
  if (is.element("try-error", class(model))) {
    model <- list(AIC = Inf)
  }
  return(model)
}

filterTBATSSpecifics <- function(y, box.cox, trend, damping, seasonal.periods, k.vector, use.arma.errors, aux.model=NULL, init.box.cox=NULL, bc.lower=0, bc.upper=1, biasadj=FALSE, ...) {
  if (is.null(aux.model)) {
    first.model <- try(
      fitSpecificTBATS(y, use.box.cox = box.cox, use.beta = trend, use.damping = damping, seasonal.periods = seasonal.periods, k.vector = k.vector, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
      silent = TRUE
    )
  } else {
    first.model <- aux.model
  }
  if (is.element("try-error", class(first.model))) {
    first.model <- list(AIC = Inf)
  }

  if (use.arma.errors) {
    suppressWarnings(arma <- try(auto.arima(as.numeric(first.model$errors), d = 0, ...), silent = TRUE))
    if (!is.element("try-error", class(arma))) {
      p <- arma$arma[1]
      q <- arma$arma[2]
      if ((p != 0) || (q != 0)) { # Did auto.arima() find any AR() or MA() coefficients?
        if (p != 0) {
          ar.coefs <- numeric(p)
        } else {
          ar.coefs <- NULL
        }
        if (q != 0) {
          ma.coefs <- numeric(q)
        } else {
          ma.coefs <- NULL
        }
        starting.params <- first.model$parameters

        second.model <- try(
          fitSpecificTBATS(y, use.box.cox = box.cox, use.beta = trend, use.damping = damping, seasonal.periods = seasonal.periods, k.vector = k.vector, ar.coefs = ar.coefs, ma.coefs = ma.coefs, init.box.cox = init.box.cox, bc.lower = bc.lower, bc.upper = bc.upper, biasadj = biasadj),
          silent = TRUE
        )
        if (is.element("try-error", class(second.model))) {
          second.model <- list(AIC = Inf)
        }

        if (second.model$AIC < first.model$AIC) {
          return(second.model)
        } else {
          return(first.model)
        }
      } else { # Else auto.arima() did not find any AR() or MA()coefficients
        return(first.model)
      }
    } else {
      return(first.model)
    }
  } else {
    return(first.model)
  }
}

makeSingleFourier <- function(j, m, T) {
  frier <- matrix(0, nrow = T, ncol = 2)
  for (t in 1:T) {
    frier[t, 1] <- cos((2 * pi * j) / m)
    frier[t, 2] <- sin((2 * pi * j) / m)
  }
  return(frier)
}

calcFTest <- function(r.sse, ur.sse, num.restrictions, num.u.params, num.observations) {
  f.stat <- ((r.sse - ur.sse) / num.restrictions) / (r.sse / (num.observations - num.u.params))
  p.value <- pf(f.stat, num.restrictions, (num.observations - num.u.params), lower.tail = FALSE)
  return(p.value)
}

#' @rdname fitted.Arima
#' @export
fitted.tbats <- function(object, h=1, ...) {
  if (h == 1) {
    return(object$fitted.values)
  }
  else {
    return(hfitted(object = object, h = h, FUN = "tbats", ...))
  }
}

#' @export
print.tbats <- function(x, ...) {
  cat(as.character(x))
  cat("\n")
  cat("\nCall: ")
  print(x$call)
  cat("\nParameters")
  if (!is.null(x$lambda)) {
    cat("\n  Lambda: ")
    cat(round(x$lambda, 6))
  }
  cat("\n  Alpha: ")
  cat(x$alpha)
  if (!is.null(x$beta)) {
    cat("\n  Beta: ")
    cat(x$beta)
    cat("\n  Damping Parameter: ")
    cat(round(x$damping.parameter, 6))
  }
  if (!is.null(x$gamma.one.values)) {
    cat("\n  Gamma-1 Values: ")
    cat(x$gamma.one.values)
  }
  if (!is.null(x$gamma.two.values)) {
    cat("\n  Gamma-2 Values: ")
    cat(x$gamma.two.values)
  }
  if (!is.null(x$ar.coefficients)) {
    cat("\n  AR coefficients: ")
    cat(round(x$ar.coefficients, 6))
  }
  if (!is.null(x$ma.coefficients)) {
    cat("\n  MA coefficients: ")
    cat(round(x$ma.coefficients, 6))
  }
  cat("\n")
  cat("\nSeed States:\n")
  print(x$seed.states)
  cat("\nSigma: ")
  cat(sqrt(x$variance))
  cat("\nAIC: ")
  cat(x$AIC)
  cat("\n")
}

#' @rdname plot.bats
#'
#' @examples
#'
#' \dontrun{
#' fit <- tbats(USAccDeaths)
#' plot(fit)
#' autoplot(fit, range.bars = TRUE)}
#'
#' @export
plot.tbats <- function(x, main="Decomposition by TBATS model", ...) {
  out <- tbats.components(x)
  plot.ts(out, main = main, nc = 1, ...)
}



#' Extract components of a TBATS model
#'
#' Extract the level, slope and seasonal components of a TBATS model. The extracted components are Box-Cox transformed using the estimated transformation parameter.
#'
#'
#' @param x A tbats object created by \code{\link{tbats}}.
#' @return A multiple time series (\code{mts}) object. The first series is the observed time series. The second series is the trend component of the fitted model. Series three onwards are the seasonal components of the fitted model with one time series for each of the seasonal components. All components are transformed using estimated Box-Cox parameter.
#' @author Slava Razbash and Rob J Hyndman
#' @seealso \code{\link{tbats}}.
#' @references De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011),
#' Forecasting time series with complex seasonal patterns using exponential
#' smoothing, \emph{Journal of the American Statistical Association},
#' \bold{106}(496), 1513-1527.
#' @keywords ts
#' @examples
#'
#' \dontrun{
#' fit <- tbats(USAccDeaths, use.parallel=FALSE)
#' components <- tbats.components(fit)
#' plot(components)}
#'
#' @export
tbats.components <- function(x) {
  # Get original data, transform if necessary
  if (!is.null(x$lambda)) {
    y <- BoxCox(x$y, x$lambda)
    lambda <- attr(y, "lambda")
  } else {
    y <- x$y
  }
  # Compute matrices
  tau <- ifelse(!is.null(x$k.vector), 2 * sum(x$k.vector), 0)
  w <- .Call(
    "makeTBATSWMatrix", smallPhi_s = x$damping.parameter, kVector_s = as.integer(x$k.vector),
    arCoefs_s = x$ar.coefficients, maCoefs_s = x$ma.coefficients, tau_s = as.integer(tau), PACKAGE = "forecast"
  )

  out <- cbind(observed = c(y), level = x$x[1, ])
  if (!is.null(x$beta)) {
    out <- cbind(out, slope = x$x[2, ])
  }

  # Add seasonal components if they exist
  if (tau > 0) {
    nonseas <- 2 + !is.null(x$beta) # No. non-seasonal columns in out
    nseas <- length(x$seasonal.periods) # No. seasonal periods
    seas.states <- cbind(x$seed.states, x$x)[-(1:(1 + !is.null(x$beta))), ]
    seas.states <- seas.states[, -ncol(seas.states)]
    w <- w$w.transpose[, -(1:(1 + !is.null(x$beta))), drop = FALSE]
    w <- w[, 1:tau, drop = FALSE]
    j <- cumsum(c(1, 2 * x$k.vector))
    for (i in 1:nseas)
      out <- cbind(out, season = c(w[, j[i]:(j[i + 1] - 1), drop = FALSE] %*% seas.states[j[i]:(j[i + 1] - 1), ]))
    if (nseas > 1) {
      colnames(out)[nonseas + 1:nseas] <- paste("season", 1:nseas, sep = "")
    }
  }

  # Add time series characteristics
  out <- ts(out)
  tsp(out) <- tsp(y)
  return(out)
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.